232
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Growth facilitation by the octocoral Gorgonia ventalina explains spatial difference in the population size structure of the common demosponge Ircinia felix

, , &
Pages 41-50 | Received 14 Apr 2017, Accepted 08 Aug 2017, Published online: 07 Nov 2017

References

  • Alvarado-Chacón EM, Acosta A. 2009. Population size-structure of the reef-coral Montastraea annularis in two contrasting reefs of a marine protected area in the southern Caribbean Sea. Bulletin of Marine Science 85:61–76.
  • Bak RP, Meesters EH. 1998. Coral population structure: the hidden information of colony size-frequency distributions. Marine Ecology Progress Series 162:301–306. doi: 10.3354/meps162301
  • Bak RP, Meesters EH. 1999. Population structure as a response of coral communities to global change. American Zoologist 39:56–65. doi: 10.1093/icb/39.1.56
  • Bell JJ, Barnes DK. 2000. The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: inclined cliff surfaces. Diversity and Distributions 6:305–323. doi: 10.1046/j.1472-4642.2000.00092.x
  • Bertness MD, Callaway R. 1994. Positive interactions in communities. Trends in Ecology and Evolution 9:191–193. doi: 10.1016/0169-5347(94)90088-4
  • Biggs BC. 2013. Harnessing natural recovery processes to improve restoration outcomes: an experimental assessment of sponge-mediated coral reef restoration. PLoS One 8(6):e64945. 15 pages. doi: 10.1371/journal.pone.0064945
  • Cimino G, Destefano S, Minale L. 1972. Further linear furanoterpenes from marine sponges. Tetrahedron 28:883–889.
  • Coma R, Pola E, Ribes M, Zabala M. 2004. Long-term assessment of temperate octocoral mortality patterns, protected vs. unprotected areas. Ecological Applications 14:1466–1478.
  • Dayton P, Jarrell S, Kim S, Thrush S, Hammerstrom K, Slattery M, Parnell E. 2016. Surprising episodic recruitment and growth of Antarctic sponges: implications for ecological resilience. Journal of Experimental Marine Biology and Ecology 482:38–55. doi: 10.1016/j.jembe.2016.05.001
  • De Goeij JM, Van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. doi: 10.1126/science.1241981
  • Diaz MC. 2005. Common sponges from sallow marine habitats from Bocas del Toro Region, Panama. Caribbean Journal of Science 41:465–475.
  • Diaz MC, Rützler K. 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69:535–546.
  • Duckworth AR, Battershill CN. 2001. Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae). New Zealand Journal of Marine and Freshwater Research 35:935–949. doi: 10.1080/00288330.2001.9517055
  • Duckworth AR, Battershill CN, Schiel DR. 2004. Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons. Aquaculture 242:237–250. doi: 10.1016/j.aquaculture.2004.08.046
  • Duque C, Bonilla A, Bautista E, Zea S. 2001. Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide, and methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix. Biochemical Systematics and Ecology 29:459–467. doi: 10.1016/S0305-1978(00)00081-8
  • Edmunds PJ. 2000. Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Marine Ecology Progress Series 202:113–124. doi: 10.3354/meps202113
  • Erwin PM, Thacker RW. 2007. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. Journal of the Marine Biological Association of the United Kingdom 87:1683–1692. doi: 10.1017/S0025315407058213
  • Garrabou J, Harmelin JG. 2002. A 20-year study on life-history traits of a harvested long-lived temperate coral in the NW Mediterranean: insights into conservation and management needs. Journal of Animal Ecology 71:966–978. doi: 10.1046/j.1365-2656.2002.00661.x
  • Gerrodette T, Flechsig AO. 1979. Sediment-induced reduction in the pumping rate of the tropical sponge Verongia lacunosa. Marine Biology 55:103–110. doi: 10.1007/BF00397305
  • Gilmour JP. 2004. Size-structures of populations of the mushroom coral Fungia fungites: the role of disturbance. Coral Reefs 23:493–504.
  • Goel M, Khanna P, Kishore J. 2010. Understanding survival analysis: Kaplan-Meier estimate. International Journal of Ayurveda Research 1:212–216.
  • González-Rivero M, Ereskovsky AV, Schönberg CH, Ferrari R, Fromont J, Mumby PJ. 2013. Life-history traits of a common Caribbean coral-excavating sponge, Cliona tenuis (Porifera: Hadromerida). Journal of Natural History 47:2815–2834. doi: 10.1080/00222933.2013.802042
  • Hartman WD. 1977. Sponges as reef builders and shapers. Studies in Geology 4:127–134.
  • Hixon MA. 1991. Predation as a Process Structuring Coral Reef Fish Communities. The Ecology of Fishes on Coral Reefs. San Diego: Academic Press. 754 pages.
  • Hughes TP, Jackson JBC. 1985. Population dynamics and life histories of foliaceous corals. Ecological Monographs 55:141–166. doi: 10.2307/1942555
  • Hutchings PA. 1986. Biological destruction of coral reefs. Coral Reefs 4:239–252. doi: 10.1007/BF00298083
  • Kohler KE, Gill SM. 2006. Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences 32:1259–1269. doi: 10.1016/j.cageo.2005.11.009
  • Koopmans M, Wijffels RH. 2008. Seasonal growth rate of the sponge Haliclona oculata (Demospongiae: Haplosclerida). Marine Biotechnology 10:502–510. doi: 10.1007/s10126-008-9086-9
  • Lewis JB. 1991. Testing the coral fragment size-dependent survivorship hypothesis for the calcareous hydrozoan Millepora complanata. Marine Ecology Progress Series 70:101–104. doi: 10.3354/meps070101
  • Littler MM, Littler DS, Taylor PR. 1987. Animal-plant defense associations: effects on the distribution and abundance of tropical reef macrophytes. Journal of Experimental Marine Biology and Ecology 105:107–121. doi: 10.1016/0022-0981(87)90166-3
  • Littler MM, Taylor PR, Littler DS. 1986. Plant defense associations in the marine environment. Coral Reefs 5:63–71. doi: 10.1007/BF00270354
  • Maldonado M, Young CM. 1998. Limits on the bathymetric distribution of keratose sponges: a field test in deep water. Marine Ecology Progress Series 174:123–139. doi: 10.3354/meps174123
  • Martinez A, Duque C, Sato N, Fujimoto Y. 1997. (8z, 13Z, 20Z)-strobilinin and (7Z, 13Z, 20Z)-felixinin: new furanosesterterpene tetronic acids from marine sponges of the genus Ircinia. Chemical and Pharmaceutical Bulletin 45:181–184. doi: 10.1248/cpb.45.181
  • McClanahan TR, Muthiga NA. 1988. Changes in Kenyan coral reef community structure and function due to exploitation. Hydrobiologia 166:269–276. doi: 10.1007/BF00008136
  • McCook L, Jompa J, Diaz-Pulido G. 2001. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417. doi: 10.1007/s003380000129
  • McDonald JI, Hooper JN, McGuinness KA. 2002. Environmentally influenced variability in the morphology of Cinachyrella australiensis (Carter 1886) (Porifera: Spirophorida: Tetillidae). Marine and Freshwater Research 53:79–84. doi: 10.1071/MF00153
  • McLean EL, Yoshioka PM. 2008. Substratum effects on the growth and survivorship of the sponge Desmapsamma anchorata. Caribbean Journal of Science 44:83–89. doi: 10.18475/cjos.v44i1.a9
  • McMurray SE, Finelli CM, Pawlik JR. 2015. Population dynamics of giant barrel sponges on Florida coral reefs. Journal of Experimental Marine Biology and Ecology 473:73–80. doi: 10.1016/j.jembe.2015.08.007
  • McMurray SE, Henkel TP, Pawlik JR. 2010. Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology 91:560–570. doi: 10.1890/08-2060.1
  • Meesters EH, Hilterman M, Kardinaal E, Keetman M, De Vries M, Bak RPM. 2001. Colony size-frequency distributions of scleractinian coral populations: spatial and interspecific variation. Marine Ecology Progress Series 209:43–54. doi: 10.3354/meps209043
  • Mercado-Molina AE, Montañez-Acuña A, Rodríguez-Barreras R, Colón-Miranda R, Díaz-Ortega G, Martínez-González N, et al. 2015a. Revisiting the population status of the sea urchin Diadema antillarum in northern Puerto Rico. Journal of the Marine Biological Association of the United Kingdom 95:1017–1024. doi: 10.1017/S002531541400188X
  • Mercado-Molina AE, Ruiz-Diaz CP, Sabat AM. 2014. Survival, growth, and branch production of unattached fragments of the threatened hermatypic coral Acropora cervicornis. Journal of Experimental Marine Biology and Ecology 457:215–219. doi: 10.1016/j.jembe.2014.04.017
  • Mercado-Molina AE, Ruiz-Diaz CP, Sabat AM. 2015b. Demographics and dynamics of two restored populations of the threatened reef-building coral Acropora cervicornis. Journal for Nature Conservation 24:17–23. doi: 10.1016/j.jnc.2015.01.001
  • Mercado-Molina AE, Sabat AM, Yoshioka PM. 2011. Demography of the demosponge Amphimedon compressa: evaluation of the importance of sexual versus asexual recruitment to its population dynamics. Journal of Experimental Marine Biology and Ecology 407:355–362. doi: 10.1016/j.jembe.2011.07.018
  • Mercado-Molina AE, Yoshioka PM. 2009. Relationships between water motion and size-specific survivorship and growth of the demosponge Amphimedon compressa. Journal of Experimental Marine Biology and Ecology 375:51–56. doi: 10.1016/j.jembe.2009.05.003
  • Neal BP, Lin TH, Winter RN, Treibitz T, Beijbom O, Kriegman D, et al. 2015. Methods and measurement variance for field estimations of coral colony planar area using underwater photographs and semi-automated image segmentation. Environmental Monitoring and Assessment 187:e496. 11 pages. doi:10.1007/s10661-015-4690-4
  • Nelson CE, Goldberg SJ, Kelly LW, Haas AF, Smith JE, Rohwer F, Carlson CA. 2013. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. The ISME Journal 7:962–979. doi: 10.1038/ismej.2012.161
  • Newman MJ, Paredes GA, Sala E, Jackson JB. 2006. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecology Letters 9:1216–1227. doi: 10.1111/j.1461-0248.2006.00976.x
  • Palumbi SR. 1986. How body plans limit acclimation: responses of a demosponge to wave force. Ecology 67:208–214. doi: 10.2307/1938520
  • Parra-Velandia FJ, Zea S. 2003. Comparación de la abundancia y distribución de algunas características de las esponjas del género Ircinia (Porifera: Demospongiae) en dos localidades contrastantes del área de Santa Marta, Caribe colombiano. Boletín Investigaciones Marinas y Costaneras 32:75–91.
  • Pawlik JR, Burch MT, Fenical W. 1987. Patterns of chemical defense among Caribbean gorgonian corals: a preliminary survey. Journal of Experimental Marine Biology and Ecology 108:55–66. doi: 10.1016/0022-0981(87)90130-4
  • Pawlik JR, Chanas B, Toonen RJ, Fenical W. 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Marine Ecology Progress Series 127:183–194. doi: 10.3354/meps127183
  • Pawlik JR, Henkel TP, McMurray SE, López-Legentil S, Loh TL, Rohde S. 2008. Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off. Marine Ecology Progress Series 368:137–143. doi: 10.3354/meps07615
  • Pawlik JR, McFall G, Zea S. 2002. Does the odor from sponges of the genus Ircinia protect them from fish predators? Journal of Chemical Ecology 28:1103–1115. doi: 10.1023/A:1016221415028
  • Pawlik JR, McMurray SE, Henkel TP. 2007. Abiotic factors control sponge ecology in Florida mangroves. Marine Ecology Progress Series 339:93–98. doi: 10.3354/meps339093
  • Reiswig HM. 1971. In situ pumping activities of tropical Demospongiae. Marine Biology 9:38–50. doi: 10.1007/BF00348816
  • Riisgård HU, Thomassen S, Jakobsen H, Weeks JM, Larsen PS. 1993. Suspension-feeding in marine sponges Halichondria panicea and Haliclona urceolus: effects of temperature on filtration-rate and energy cost of pumping. Marine Ecology Progress Series 96:177–188. doi: 10.3354/meps096177
  • Ritson-Williams R, Becerro MA, Paul VJ. 2005. Spawning of the giant barrel sponge Xestospongia muta in Belize. Coral Reefs 24:160. doi: 10.1007/s00338-004-0460-4
  • Rützler K. 1975. The role of burrowing sponges in bioerosion. Oecologia 19:203–216. doi: 10.1007/BF00345306
  • Rützler K, Macintyre IG. 1982. The habitat distribution and community structure of the barrier reef complex at Carrie Bow Cay, Belize. The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize, I. Structure and communities. Smithsonian Contributions to the Marine Sciences 12:9–45.
  • Sammarco PW. 1982. Echinoid grazing as a structuring force in coral communities: whole reef manipulations. Journal of Experimental Marine Biology and Ecology 61:31–55. doi: 10.1016/0022-0981(82)90020-X
  • Stachowicz JJ. 2001. Mutualism, facilitation, and the structure of ecological communities: positive interactions play a critical, but underappreciated, role in ecological communities by reducing physical or biotic stresses in existing habitats and by creating new habitats on which many species depend. Bioscience 51:235–246. doi: 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
  • Toledo-Hernández C, Yoshioka P, Bayman P, Sabat AM. 2009. Impact of disease and detachment on growth and survivorship of sea fans Gorgonia ventalina. Marine Ecology Progress Series 393:47–54. doi: 10.3354/meps08238
  • Tsounis G, Rossi S, Gili JM, Arntz W. 2006. Population structure of an exploited benthic cnidarian: the case study of red coral (Corallium rubrum L.). Marine Biology 149:1059–1070. doi: 10.1007/s00227-006-0302-8
  • Vacelet J, Boury-Esnault N. 1995. Carnivorous sponges. Nature 373:333–335. doi: 10.1038/373333a0
  • van Soest RWM. 1994. Demosponge distributions patterns. In: van Soest R.W.M, van Kempen TMG, Braekman JC, editors. Sponges in Time and Space: Biology, Chemistry, Paleontology. Rotterdam: A.A. Balkema, p 213–223.
  • Weinheimer AJ, Washecheck PH. 1969. The structure of the marine benzofuran, furoventalene, a non-farnesyl sesquiterpene chemistry or coelenterates. XIV. Tetrahedron Letters 10(39):3315–3318. doi: 10.1016/S0040-4039(00)99750-8
  • Wild C, Mayr C, Wehrmann L, Schöttner S, Naumann M, Hoffmann F, Rapp HT. 2008. Organic matter release by cold water corals and its implication for fauna–microbe interaction. Marine Ecology Progress Series 372:67–75. doi: 10.3354/meps07724
  • Wilkinson CR. 1983. Net primary productivity in coral reef sponges. Science 219:410–412. doi: 10.1126/science.219.4583.410
  • Wilkinson CR, Cheshire AC. 1988. Growth rate of Jamaican coral reef sponges after Hurricane Allen. The Biological Bulletin 175:175–179. doi: 10.2307/1541905
  • Wilkinson CR, Vacelet J. 1979. Transplantation of marine sponges to different conditions of light and current. Journal of Experimental Marine Biology and Ecology 37:91–104. doi: 10.1016/0022-0981(79)90028-5
  • Wulff JL. 1984. Sponge-mediated coral reef growth and rejuvenation. Coral Reefs 3(3):157–163. doi: 10.1007/BF00301960
  • Wulff JL. 1991. Asexual fragmentation, genotype success, and population dynamics of erect branching sponges. Journal of Experimental Marine Biology and Ecology149: 227–247.
  • Wulff JL. 2001. Assessing and monitoring coral reef sponges: why and how? Bulletin of Marine Science 69:831–846.
  • Wulff JL. 2004. Sponges on Mangrove Roots, Twin Cays, Belize: Early Stages of Community Assembly. Atoll Research Bulletin no. 519. Washington, DC: National Museum of Natural History, Smithsonian Institution.
  • Wulff JL. 2006. Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biological Conservation 127:167–176. doi: 10.1016/j.biocon.2005.08.007
  • Wulff JL. 2013. Recovery of sponges after extreme mortality events: morphological and taxonomic patterns in regeneration versus recruitment. Integrative and Comparative Biology 53:512–523. doi: 10.1093/icb/ict059
  • Yahel G, Sharp JH, Marie D, Häse C, Genin A. 2003. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnology and Oceanography 48:141–149. doi: 10.4319/lo.2003.48.1.0141
  • Yoshioka PM. 1996. Variable recruitment and its effects on the population and community structure of shallow-water gorgonians. Bulletin of Marine Science 59:433–443.
  • Yoshioka PM, Yoshioka BB. 1991. A comparison of the survivorship and growth of shallow-water gorgonian species of Puerto Rico. Marine Ecology Progress Series 69:253–260. doi: 10.3354/meps069253
  • Zea S. 1992. Estimation of desmosponge (Porifera, Demospongiae) larval settlement rates from short-term recruitment rates: preliminary experiments. Helgoländer Meeresuntersuchungen 46:293–300. doi: 10.1007/BF02367100
  • Zea S. 1993. Cover of sponges and other sessile organisms in rocky and coral reef habitats of Santa Marta, Colombian Caribbean Sea. Caribbean Journal of Science 29:75–88.
  • Zea S, Henkel TP, Pawlik JR. 2014. The Sponge Guide: A Picture Guide to Caribbean Sponges, 3rd edition. www.spongeguide.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.