271
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Interannual phenological variability in two North-East Atlantic populations of Calanus finmarchicus

, , , , , & show all
Pages 752-767 | Received 12 Jan 2018, Accepted 24 Jul 2018, Published online: 14 Sep 2018

References

  • Aksnes DL, Miller CB, Ohman MD, Wood SN. 1997. Estimation techniques used in studies of copepod population dynamics – a review of underlying assumptions. Sarsia. 82:279–96. doi: 10.1080/00364827.1997.10413657
  • Aksnes DL, Ohman MD. 1996. A vertical life table approach to zooplankton mortality estimation. Limnololy and Oceanography. 41:1461–69. doi: 10.4319/lo.1996.41.7.1461
  • Asch RG. 2015. Climate change and decadal shifts in the phenology of larval fishes in the California current ecosystem. Proceedings of the National Academy of Sciences. 112:E4065–E4074. doi:10.1073/pnas.1421946112.
  • Astthorsson O, Hallgrimsson I, Jónsson GS. 1983. Variations in zooplankton densities in Icelandic waters in spring during the years 1961–1982. Rit Fiskideildar. 7:73–113.
  • Atkinson A, Harmer RA, Widdicombe CE, Mcevoy AJ, Smyth TJ, Cummings DG, Somerfield PJ, Maud JL, Mcconville K. 2015. Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. Progress in Oceanography. 137: Part B:498–512. doi:10.1016/j.pocean.2015.04.023.
  • Bandara K, Varpe Ø, Ji R, Eiane K. 2018. A high-resolution modeling study on diel and seasonal vertical migrations of high-latitude copepods. Ecological Modelling. 368:357–76. doi:10.1016/j.ecolmodel.2017.12.010.
  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC. 2003. Plankton effect on cod recruitment in the North Sea. Nature. 426:661–64. doi:10.1038/nature02164.
  • Beaugrand G, Conversi A, Chiba S, Edwards M, Fonda-Umani S, Greene C, Mantua N, Otto SA, Reid PC, Stachura MM, et al. 2015. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philosophical Transactions of the Royal Society B: Biological Sciences. 370(1659):20130272. doi:10.1098/rstb.2013.0272.
  • Beaugrand G, Mackas D, Goberville E. 2013. Applying the concept of the ecological niche and a macroecological approach to understand how climate influences zooplankton: advantages, assumptions, limitations and requirements. Progess in Oceanography. 111:75–90. doi:10.1016/j.pocean.2012.11.002.
  • Campbell RG, Wagner MM, Teegarden GJ, Boudreau CA, Durbin EG. 2001. Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Marine Ecology Progress Series. 221:161–83. doi:10.3354/meps221161.
  • Chiba S, Tadokoro K, Sugisaki H, Saino T. 2006. Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Global Change Biology. 12:907–20. doi:10.1111/j.1365-2486.2006.01136.x.
  • Chust G, Castellani C, Licandro P, Ibaibarriaga L, Sagarminaga Y, Irigoien X. 2014. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES Journal of Marine Science. 71:241–53. doi:10.1093/icesjms/fst147.
  • Choquet M, Hatlebakk M, Dhanasiri AK, Kosobokova K, Smolina I, Søreide JE, Svensen C, Melle W, Kwaśniewski S, Eiane K. 2017. Genetics redraws pelagic biogeography of Calanus. Biology Letters. 13:20170588. doi:10.1098/rsbl.2017.0588.
  • Cohen J, Barlow M. 2005. The NAO, the AO, and global warming: How closely related? Journal of Climate. 18:4498–4513. doi:10.1175/JCLI3530.1.
  • Conover RJ. 1988. Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167/168:127–142. doi: 10.1007/BF00026299
  • Corkett C, Mclaren I, Sevigny J. 1986. The rearing of the marine calanoid copepods Calanus finmarchicus (Gunnerus), C. glacialis Jaschnov and C. hyperboreus Kroyer with comment on the equiproportional rule. In: Schriever G, Schminke H, Shih CE, editor. Proceedings of the second international conference on Copepoda no 58. Ottawa: The National Museum of Ottawa; p. 539–46.
  • Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H. 2007. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophysical Research Letters. 34:L18504. doi:10.1029/2007GL029948.
  • Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C. 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research. 110:113. doi:10.1029/2004JC002757.
  • Cushing DH. 1990. Plankton production and year-class strength in fish fopulations: an update of the match/mismatch hypothesis. In: Blaxter JHS & Southward AJ, editors. Advances in Marine Biology. 26:249–93. doi: 10.1016/S0065-2881(08)60202-3
  • Daase M, Vik JO, Bagoien E, Stenseth NC, Eiane K. 2007. The influence of advection on Calanus near Svalbard: statistical relations between salinity, temperature and copepod abundance. Journal of Plankton Research. 29:903–11. doi:10.1093/plankt/fbm068.
  • Durant JLM, Hjermann DÃ, Ottersen G, Stenseth NC. 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research. 33:271–83. doi:10.3354/cr033271.
  • Diel S, Tande K. 1992. Does the spawning of Calanus finmarchicus in high latitudes follow a reproducible pattern? Marine Biology. 113:21–31. doi:10.1007/bf00367634.
  • Durbin EG, Garrahan PR, Casas MC. 2000. Abundance and distribution of Calanus finmarchicus on the Georges Bank during 1995 and 1996. ICES Journal of Marine Science. 57:1664–85. doi:10.1006/jmsc.2000.0974.
  • Edwards M, Richardson AJ. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 430:881–84. doi:10.1038/nature02808.
  • Espinasse M, Halsband C, Varpe Ø, Gislason A, Gudmundsson K, Falk-Petersen S, Eiane K. 2017. The role of local and regional environmental factors for Calanus finmarchicus and C. hyperboreus abundances in the Nordic Seas. Polar Biology. 40:2363–80. doi:10.1007/s00300-017-2150-z.
  • Falk-Petersen S, Pavlov V, Timofeev S, Sargent J. 2007. Climate variability and possible effects on arctic food chains: The role of Calanus. In: Ørbæk J, Kallenborn R, Tombre I, Hegseth E, Falk-Petersen S, Hoel A, editor. Arctic alpine ecosystems and people in a changing environment. Berlin: Springer; p. 147–66.
  • Feng Z, Ji R, Ashjian C, Campbell R, Zhang J. 2018. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment. Global Change Biology. 24(1):e159–e170. doi:10.1111/gcb.13890.
  • Fiksen Ø. 2000. The adaptive timing of diapause – a search for evolutionarily robust strategies in Calanus finmarchicus. ICES Journal of Marine Science. 57:1825–33. doi:10.1006/jmsc.2000.0976.
  • Gaard E, Nattestad K. 2002. Feeding, reproduction and seasonal development of Calanus finmarchicus in relation to water masses and phytoplankton in the southern Norwegian Sea. ICES CM 2002/N:08. 16 pages.
  • Gabrielsen TM, Merkel B, Søreide JE, Johansson-Karlsson E, Bailey A, Vogedes D, Nygard H, Varpe Ø, Berge J. 2012. Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biology. 35:1621–28. doi:10.1007/s00300-012-1202-7.
  • Gislason A. 2005. Seasonal and spatial variability in egg production and biomass of Calanus finmarchicus around Iceland. Marine Ecology Progress Series. 286:177–92. doi:10.3354/meps286177.
  • Gislason A, Petursdottir H, Astthorsson OS, Gudmundsson K, Valdimarsson H. 2009. Inter-annual variability in abundance and community structure of zooplankton south and north of Iceland in relation to environmental conditions in spring 1990–2007. Journal of Plankton Research. 31(5):541–51. doi:0.1093/plankt/fbp007 doi: 10.1093/plankt/fbp007
  • Gislason A, Silva T. 2012. Abundance, composition, and development of zooplankton in the Subarctic Iceland Sea in 2006, 2007, and 2008. ICES Jouranl of Marine Science. 69:1263–76. doi:10.1093/icesjms/fss070.
  • Gislason A, Petursdottir H, Gudmundsson K. 2014. Long-term changes in abundance of Calanus finmarchicus south and north of Iceland in relation to environmental conditions and regional diversity in spring 1990–2013. ICES Journal of Marine Sciense. 71:2539–49. doi:10.1093/icesjms/fsu098.
  • Greene CH, Pershing AJ. 2007. OCEANS: climate drives sea change. Science. 315:1084–85. doi:10.1126/science.1136495.
  • Greve W, Prinage S, Zidowitz H, Nast J, Reiners F. 2005. On the phenology of North Sea ichthyoplankton. ICES Journal of Marine Science. 62:1216–23. doi:10.1016/j.icesjms.2005.03.011.
  • Gudmundsson K. 1998. Long-term variation in phytoplankton productivity during spring in Icelandic waters. ICES Jouranl of Marine Science. 55:635–43. doi:10.1006/jmsc.1998.0391.
  • Hays GC, Richardson AJ, Robinson C. 2005. Climate change and marine plankton. Trends in Ecology and Evolution. 20:337–44. doi:10.1016/j.tree.2005.03.004.
  • Head EJH, Melle W, Pepin P, Bagøien E, Broms C. 2013. On the ecology of Calanus finmarchicus in the subarctic North Atlantic: a comparison of population dynamics and environmental conditions in areas of the Labrador Sea-Labrador/newfoundland shelf and Norwegian Sea Atlantic and Coastal Waters. Progress in Oceanography. 114:46–63. doi:10.1016/j.pocean.2013.05.004.
  • Henson SA, Dunne JP, Sarmiento JL. 2009. Decadal variability in North Atlantic phytoplankton blooms. Journal of Geophysical Research. 114:753. doi:10.1029/2008JC005139.
  • Hirche HJ, Kattner G. 1993. Egg production and lipid content of Calanus glacialis in spring: indication of a food-dependent and food-independent reproductive mode. Marine Biology. 117:615–22. doi:10.1007/BF00349773.
  • Hollowed AB, Sundby S. 2014. Change is coming to the northern oceans. Science. 344:1084–85. doi:10.1126/science.12511166 doi: 10.1126/science.1251166
  • Irigoien X. 2004. Some ideas about the role of lipids in the life cycle of Calanus finmarchicus. Journal of Plankton Research. 26:259–63. doi:10.1093/plankt/fbh030.
  • Jaschnov WA. 1970. Distribution of Calanus species in the Seas of the Northern Hemisphere. Internationale Revue der gesamten Hydrobiologie und Hydrographie. 55:197–212. doi:10.1002/iroh.19700550203.
  • Kendall MG. 1970. Rank correlation methods. London: Griffin. 160 pages.
  • Kerr RA. 1999. A new force in high-latitude climate. Science. 284:241–42. doi:10.1126/science.284.5412.241.
  • Kjellerup S, Dünweber M, Swalethorp R, Nielsen T, Møller EF, Markager S, Hansen BW. 2012. Effects of a future warmer ocean on the coexisting copepods Calanus finmarchicus and C. glacialis in Disko Bay, western Greenland. Marine Ecology Progress Series. 447:87–108. doi:10.3354/meps09551.
  • Körner C, Basler D. 2010. Phenology under global warming. Science. 327:1461–62. doi:10.1126/science.1186473.
  • Kristiansen I, Gaard E, Hátún H, Jónasdóttir S, Ferreira ASA. 2016. Persistent shift of Calanus spp. in the southwestern Norwegian Sea since 2003, linked to ocean climate. ICES Journal of Marine Science. 73(5):1319–29. doi:10.1093/icesjms/fsv222.
  • Kvile KØ, Dalpadado P, Orlova E, Stenseth NC, Stige LC. 2014. Temperature effects on Calanus finmarchicus vary in space, time and between developmental stages. Marine Ecology Progress Series. 517:85–104. doi:10.3354/meps11024.
  • Kwasniewski S, Hop H, Falk-Petersen S, Pedersen G. 2003. Distribution of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. Journal of Plankton Research. 25:1–20. doi:10.1093/plankt/25.1.1.
  • Legendre P, Legendre LF. 1998. Numerical ecology. Amsterdam: Elsevier. 989 pages.
  • Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J. 2011. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Progress in Oceanography. 90:18–32. doi:10.1016/j.pocean.2011.02.004.
  • Mackas DL, Batten S, Trudel M. 2007. Effects on zooplankton of a warmer ocean: recent evidence from the Northeast Pacific. Progress in Oceanography. 75:223–52. doi:10.1016/j.pocean.2007.08.010.
  • Mackas DL, Goldblatt R, Lewis AG. 1998. Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific. Canadian Journal of Fisheries and Aquatic Sciences. 55:1878–93 doi:10.1139/f98-080.
  • Mackas DL, Greve W, Edwards M, Chiba S, Tadokoro K, Eloire D, Mazzocchi MG, Batten S, Richardson AJ, Johnson C, et al. 2012. Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology. Progress in Oceanography. 97–100:31–62. doi:10.1016/j.pocean.2011.11.005.
  • Maps F, Runge JA, Leising A, Pershing AJ, Record NR, Plourde S, Pierson JJ. 2012. Modelling the timing and duration of dormancy in populations of Calanus finmarchicus from the Northwest Atlantic shelf. Journal of Plankton Research. 34:36–54. doi:10.1093/plankt/fbr088.
  • Maritorena S, d’Andon OHF, Mangin A, Siegel DA. 2010. Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sensing of Environment. 114:1791–1804. doi:10.1016/j.rse.2010.04.002.
  • Marshall SM, Orr AP. 1955. The biology of a marine copepod, Calanus finmarchicus Gunnerus. Edinburgh: Oliver & Boyd. 196 pages.
  • Mcnamara JM, Houston AI. 2008. Optimal annual routines: behaviour in the context of physiology and ecology. Philosophical Transactions: Biological Sciences. 363:301–19. doi:10.2307/20208431 doi: 10.1098/rstb.2007.2141
  • Melle W, Skjoldal HR. 1998. Reproduction and development of Calanus finmarchicus, C. glacialis and C. hyperboreus in the Barents Sea. Marine Ecology Progress Series. 169:211–28. doi:10.3354/meps169211.
  • Menzel A, Sparks TH,, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, et al. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology. 12:1969–76. doi:10.1111/j.1365-2486.2006.01193.x.
  • Niehoff B, Hirche HJ, Båmstedt U. 2000. The reproduction of Calanus finmarchicus in the Norwegian Sea in spring. Sarsia. 85:15–22. doi:10.1080/00364827.2000.10414552.
  • Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 421:37–42. doi:10.1038/nature01286.
  • Pierce D. 2013. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R. package version 1.9. https://CRAN.R-project.org/package=ncdf4.
  • Post E. 2013. Life history variation and phenology. In: Post E, editor. Ecology of climate change – the importance of biotic interactions. Oxford: Princeton University Press; p. 54–96.
  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna: R foundation for Statistical Computing.
  • Sparks TH, Jeffree EP, Jeffree CE. 2000. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology. 44:82–87. doi:10.1007/s004840000049.
  • Stefánsson U, Gudmundsson G. 1969. Hydrographic conditions off the northeast coast of Iceland in relation to meteorological factors. Tellus. 21:245–58. doi: 10.3402/tellusa.v21i2.10078
  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbøk JB, Bischof K, Papucci C, Zajaczkowski M, et al. 2002. The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research. 21:133–66. doi:10.1111/j.1751–8369.2002.tb00072.x.
  • Thackeray SJ, Henrys PA, Feuchtmayr H, Jones ID, Maberly SC, Winfield IJ. 2013. Food web de-synchronization in England’s largest lake: an assessment based on multiple phenological metrics. Global Change Biology. 19:3568–80. doi:10.1111/gcb.12326.
  • Thórdardóttir T. 1984. Primary production north of Iceland in relation to water masses in May-June 1970–1980. ICES CM 1984/L. 20:17.
  • Turner JT, Borkman DG, Hunt CD. 2006. Zooplankton of Massachusetts Bay, USA, 1992-2003: relationships between the copepod Calanus finmarchicus and the North Atlantic Oscillation. Marine Ecology Progress Series. 311:115–24. doi:10.3354/meps311115.
  • UNESCO/SCOR. 1996. Determination of photosynthetic pigments in seawater. Monograpths in oceanographic methodology, vol. 1. Paris: UNESCO/SCOR. 69 pages.
  • Unstad KH, Tande KS. 1991. Depth distribution of Calanus finmarchicus and C. glacialis in relation to environmental conditions in the Barents Sea. Polar Research. 10:409–20. doi:10.1111/j.1751-8369.1991.tb00662.x doi: 10.3402/polar.v10i2.6755
  • Van Buuren D, Groothuis-Oudshoorn K. 2011. mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software. 45(3):1–67. http://www.jstatsoft.org/v45/i03/.
  • Varpe Ø. 2017. Life history adaptations to seasonality. Integrative and Comparative Biology. 57:943–60. doi:i10.1093/icb/icx123.
  • Varpe Ø. 2012. Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. Journal of Plankton Research. 34:267–76. doi:10.1093/plankt/fbr108.
  • Varpe Ø, Jørgensen C, Tarling GA, Fiksen Ø. 2007. Early is better: seasonal egg fitness and timing of reproduction in a zooplankton life-history model. Oikos. 116:1331–42. doi:10.1111/j.0030-1299.2007.15893.x.
  • Villarino E, Chust G, Licandro P, Butenschon M, Ibaibarriaga L, Larranaga A, Irigoien X. 2015. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change. Marine Ecology Progress Series. 531:121–142. doi:10.3354/meps11299.
  • Visbeck M, Chassignet EP, Curry RG, Delworth TL, Dickson RR, Krahmann G. 2013. The ocean's response to North Atlantic oscillation variability. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M, editors. The North Atlantic oscillation: climatic significance and environmental impact. https://agupubs.onlinelibrary.wiley.com/series/5064 Geophysical Monograph Series. Washington, DC: American Geophysical Union, p. 113–45.
  • Walczowski W, Piechura J, Goszczko I, Wieczorek P. 2012. Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES Journal of Marine Science. 69:864–69. doi:10.1093/icesjms/fss068.
  • Wassmann P, Duarte CM, Agustí S, Sejr MK. 2011. Footprints of climate change in the Arctic marine ecosystem. Global Change Biology. 17:1235–49. doi:10.1111/j.1365-2486.2010.02311.x.
  • Weydmann A, Walczowski W, Carstensen J, Kwaśniewski S. 2018. Warming of subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Global Change Biology. 24:172–83. doi:10.1111/gcb.13864.
  • Wilson RJ, Banas NS, Heath MR, Speirs DC. 2016. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus. Global Change Biology. 22(10):3332–40. doi:10.1111/gcb.13282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.