377
Views
17
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Otoliths as a tool to study reef fish population structure from coastal islands of South Brazil

ORCID Icon, , , & ORCID Icon
Pages 973-988 | Received 10 Apr 2018, Accepted 15 Jan 2019, Published online: 08 Feb 2019

References

  • Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J. 2004. Marine fronts at the continental shelves of austral South America: physical and ecological processes. Journal of Marine Systems. 44:83–105. DOI:10.1016/j.jmarsys.2003.09.005.
  • Akcakaya HR, Mills G, Doncaster CP. 2007. The role of metapopulations in conservation. In: Macdonald DW, Service K, editors. Key topics in conservation. Oxford: Blackwell Publishing; p. 64–84.
  • Albrecht H. 1969. Behavior of four species of Atlantic damselfish from Columbia, South America, (Abudefduf saxatilis, A. taurus, Chromis multilineata, C. cyanea; Pisces Pomacentridae). Zeitschrift Tierpsychol. 26:662–676. DOI:10.1111/j.1439-0310.1969.tb01969.x.
  • Aschenbrenner A, Ferreira BP, Rooker JR. 2016. Spatial and temporal variability in the otolith chemistry of the Brazilian snapper Lutjanus alexandrei from estuarine and coastal environments. Journal of Fish Biology. 89(1):753–769. DOI:10.1111/jfb.13003.
  • Avigliano E, Martinez CFR, Volpedo AV. 2014. Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fisheries Research. 149:55–60. DOI:10.1016/j.fishres.2013.09.013.
  • Bacha M, Jemaa S, Hamitouche A, Rabhi K, Amara R. 2014. Population structure of the European anchovy, Engraulis encrasicolus, in the SW Mediterranean Sea, and the Atlantic Ocean: evidence from otolith shape analysis. ICES Journal of Marine Science. 71(9):2429–2435. DOI:10.1093/icesjms/fsu097.
  • Bacha M, Jeyid AM, Jaafour S, Yahyaoui A, Diop M, Amara R. 2016. Insights on stock structure of round sardinella Sardinella aurita off northwest Africa based on otolith shape analysis. Journal of Fish Biology. 89:2153–2166. DOI:10.1111/jfb.13117.
  • Bay LK, Caley MJ, Crozier RH. 2008. Meta-population structure in a coral reef fish demonstrated by genetic data on patterns of migration, extinction and re-colonisation. BMC Evolutionary Biology. 8:248. DOI:10.1186/1471-2148-8-248.
  • Begg GA, Campana SE, Fowler AJ, Suthers IM. 2005. Otolith research and application: current directions in innovation and implementation. Marine and Freshwater Research. 56(5):477–483. DOI:10.1071/MF05111.
  • Begg GA, Overholtz WJ, Munroe NJ. 2001. The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on Georges Bank. Fishery Bulletin. 99:1–14.
  • Bostanci D, Polat N, Kurucu G, Yedier S, Kontas S, Darçin M. 2015. Using otolith shape and morphometry to identify four Alburnus species (A. chalcoides, A. escherichii, A. mossulensis and A. tarichi) in Turkish inland waters. Journal of Applied Ichthyology. 31(6):1013–1022. DOI:10.1111/jai.12860.
  • Bradbury IR, Campana SE, Bentzen P. 2008. Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otoliths elemental approaches. Marine Ecology. 17(6):1438–1450. DOI:10.1111/j.1365-294X.2008.03694.x.
  • Campana SE. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series. 188:263–297. DOI:10.3354/meps188263.
  • Campana SE. 2005. Otolith elemental composition as a natural marker of fish stocks. In Stock identification methods; p. 227-245.
  • Campana SE, Casselman JM. 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences. 50:1062–1083. doi: 10.1139/f93-123
  • Campana SE, Chouinard GA, Hanson JM, Frechet A, Brattey J. 2000. Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research. 46(1):343–357. DOI:10.1016/S0165-7836(00)00158-2.
  • Capoccioni F, Costa C, Aguzzi J, Menesatti P, Lombarte A, Ciccotti E. 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) local stocks. J Exp Mar Biol Ecol. 397:1–7. DOI:10.1016/j.jembe.2010.11.011.
  • Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences. 61:158–167. doi: 10.1139/f03-151
  • Carvalho JLB, Schettini CAF, Ribas TM. 1998. Estrutura termohalina do litoral centro-norte catarinense. Notas Técnicas da Faculdade de Ciências do Mar. 2:181–197. DOI:10.14210/bjast.v2n1.p181-197.
  • Chang MY, Geffen AJ. 2012. Taxonomic and geographic influences on fish otolith microchemistry. Fish and Fisheries. 14(4):458–492. DOI:10.1111/j.1467-2979.2012.00482.x.
  • Chittaro PM, Usseglio P, Fryer BJ, Sale PF. 2005. Using otolith microchemistry of Haemulon flavolineatum (French grunt) to characterize mangroves and coral reefs throughout Turneffe Atoll, Belize: difficulties at small spatial scales. Estuaries. 28(3):373–381. DOI:10.1007/BF02693920.
  • Clarke LM, Thorrold SR, Conover DO. 2011. Population differences in otolith chemistry have a genetic basis in Menidia menidia. Canadian Journal of Fisheries and Aquatic Sciences. 68:105–114. DOI:10.1139/F10-147.
  • Condini MV, Tanner SE, Reis-Santos P, Albuquerque CQ, Saint’Pierre TD, Vieira JP, Cabral HN, Garcia AM. 2016. Prolonged estuarine habitat use by dusky grouper Epinephelus marginatus at subtropical latitudes revealed by otolith microchemistry. Endangered Species Research. 29(3):271. DOI:10.3354/esr00717.
  • Correia AT, Hamer P, Carocinho B, Silva A. 2014. Evidence for meta-population structure of Sardina pilchardus in the Atlantic Iberian waters from otolith elemental signatures of a strong cohort. Fisheries Research. 149:76–85. DOI:10.1016/j.fishres.2013.09.016.
  • Correia AT, Pipa T, Gonçalves JMS, Erzini K, Hamer PA. 2011. Insights into population structure of Diplodus vulgaris along the SW Portuguese coast from otolith elemental signatures. Fisheries research. 111(1):82–91. DOI:10.1016/j.fishres.2011.06.014.
  • Correia AT, Ramos AA, Barros F, Silva G, Hamer P, Morais P, Cunha RL, Castilho R. 2012. Population structure and connectivity of the European conger eel (Conger conger) across the northeastern-Atlantic and Western-Mediterranean: integrating molecular and otolith elemental approaches. Marine Biology. 159:1509–1525. DOI:10.1007/s00227-012-1936-3.
  • Cowen RK, Paris CB, Srinivasan A. 2006. Scaling of connectivity in marine populations. Science. 311(5760):522–527. DOI:10.1126/science.1122039.
  • Crampton JS. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia. 28:179–186. DOI:10.1111/j.1502-3931.1995.tb01611.x.
  • Daros FA, Bueno LS, Vilar CC, Passos AC, Spach HL. 2012. Checklist of rocky reef fishes from the Currais Archipelago and Itacolomis Island, Paraná state, Brazil. Check List. 8:349–354. DOI:10.15560/8.3.349.
  • Daros FA, Spach HL, Sial AN, Correia AT. 2016. Otolith fingerprints of the coral reef fish Stegastes fuscus in southeast Brazil: a useful tool for population and connectivity studies. Regional Studies in Marine Science. 3:262–272. DOI:10.1016/j.rsma.2015.11.012.
  • Diegues AC, Rosman PCC. 1998. Caracterização dos ativos ambientais em áreas selecionadas da zona costeira brasileira. Ministério do Meio Ambiente, dos Recursos Hídricos e da Amazônia Legal, Brasília; 136 p.
  • Dove SG, Kingsford MJ. 1998. Use of otoliths and eye lenses for measuring trace-metal incorporation in fishes: a biogeographic study. Marine Biology. 130(3):377–387. DOI:10.1007/s002270050258.
  • Elsdon TS, Gillanders BM. 2006. Identifying migratory contingents of fish by combining otolith Sr:Ca with temporal collections of ambient Sr:Ca concentrations. Journal of Fish Biology. 69:643–657. DOI:10.1111/j.1095-8649.2006.01136.x.
  • Farias I, Vieira AR, Gordo LS, Figueiredo I. 2009. Otolith shape analysis as a tool for stock discrimination of the black scabbardfish, Aphanopus carbo Lowe, 1839 (Pisces: Trichiuridae), in Portuguese waters. Scientia Marina. 73(S2):47–53. DOI:10.3989/scimar.2009.73s2047.
  • Ferguson GJ, Ward TM, Gillanders BM. 2011. Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fisheries Research. 110(1):75–83. DOI:10.1016/j.fishres.2011.03.014.
  • Feyrer F, Hobbs J, Baerwald M, Sommer T, Yin QZ, Clark K, May B, Bennett W. 2007. Otolith microchemistry provides information complementary to microsatellite DNA for a migratory fish. Transactions of the American Fisheries Society. 136:469–476. DOI:10.1577/T06-044.1.
  • Fishelson L. 1970. Behaviour and ecology of a population of Abudefduf saxatilis (Pomacentridae, Teleostei) at Eilat (Red Sea). Animal Behaviour. 18:225–226. DOI:10.1016/S0003-3472(70)80032-X.
  • Floeter SR, Guimarães RZP, Rocha LA, Ferreira CEL, Rangel CA, Gasparini JL. 2001. Geographic variation in reef-fish assemblages along the Brazilian coast. Global Ecology and Biogeography. 10:423–431. DOI:10.1046/j.1466-822X.2001.00245.x.
  • Fowler AJ, Campana SE, Thorrold SR, Jones CM. 1995. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution-based ICPMS. Canadian Journal of Fisheries and Aquatic Sciences. 52(7):1421–1430. DOI:10.1139/f95-137.
  • Fowler AM, Macreadie PI, Bishop DP, Booth DJ. 2015. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish. Marine Environment Research. 106:103–113. DOI:10.1016/j.marenvres.2015.03.007.
  • Froese R, Pauly D. 2016. FishBase. World Wide Web electronic publication. http://www.fishbase.org/summary/1119 [accessed 2016 Aug 11].
  • Galley EA, Wright PJ, Gibb FM. 2006. Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod. ICES Journal of Marine Science. 63(9):1710–1717. DOI:10.1016/j.icesjms.2006.06.014.
  • Hanski I, Simberloff D. 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski I, Gilpin M, editors. Metapopulation biology. Ecology, genetics, and evolution. San Diego: Academic Press; p. 5–26.
  • Iwata H, Ukai Y. 2002. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity. 93:384–385. DOI:10.1093/jhered/93.5.384.
  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science. 293(5530):629–637. DOI:10.1126/science.1059199.
  • James MK, Armsworth PR, Mason LB, Bode L. 2002. The structure of reef fish Metapopulations: Modelling larval dispersal and retention patterns. Proceedings Biological Sciences. 269:2079–2086. DOI:10.1098/rspb.2002.2128.
  • Kingsford MJ, Gillanders BM. 2000. Variation in concentrations of trace elements in otoliths and eye lenses of a temperate reef fish, Parma microlepis, as a function of depth, spatial scale, and age. Marine Biology. 137:403–414. DOI:10.1007/s002270000304.
  • Liu SYV, Wang CH, Shiao JC, Dai CF. 2010. Population connectivity of neon damsel, Pomacentrus coelestis, inferred from otolith microchemistry and mtDNA. Marine and Freshwater Research. 61(12):1416–1424. DOI:10.1071/MF10079.
  • Lo-Yat A, Meekan M, Munksgaard N, Parry D, Planes S, Wolter M, Carleton J. 2005. Small-scale spatial variation in the elemental composition of otoliths of Stegastes nigricans (Pomacentridae) in French Polynesia. Coral Reefs. 24(4):646–653. DOI:10.1007/s00338-005-0047-8.
  • Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S. 2010. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environmental Biology of Fishes. 89(3-4):591–605. DOI:10.1007/s10641-010-9674-1.
  • Marengo M, Baudouin M, Viret A, Laporte M, Berrebi P, Vignon M, Marchand B, Durieux EDH. 2017. Combining microsatellite, otolith shape and parasites community analyses as a holistic approach to assess population structure of Dentex dentex. Journal Sea Research. 128:1–14. DOI:10.1016/j.seares.2017.07.003.
  • Mérigot B, Letourneur Y, Lecomte-Finiger R. 2007. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Marine Biology. 151(3):997–1008. DOI:10.1007/s00227-006-0549-0.
  • Miller JA. 2011. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology. 40:42–52. DOI:10.1016/j.jembe.2011.05.017.
  • Milton DA, Chenery RS. 2001. Can otolith chemistry detect the population structure of the shad hilsa Tenualosa ilisha? Comparison with the results of genetic and morphological studies. Marine Ecology Progress Series. 222:239–251. DOI:10.3354/meps222239.
  • Molina WF, Shibatta OA, Galetti-Jr PM. 2006. Multivariate morphological analyses in continental and island populations of Abudefduf saxatilis (Linnaeus) (Pomacentridae, Perciformes) of Western Atlantic. Panam J Aquat Sci. 1:49–56.
  • Mora C, Sale PF. 2002. Are populations of coral reef fish open or closed? Trends in Ecology and Evolution. 17:422–428. DOI:10.1016/S0169-5347(02)02584-3.
  • Moreira C, Froufe E, Sial AN, Caeiro A, Vaz-Pires P, Correia AT. 2018. Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fisheries Research. 197:113–122. DOI:10.1016/j.fishres.2017.08.012.
  • Moreira C, Froufe E, Sial AN, Caeiro A, Vaz-Pires P, Correia AT. 2019. Otolith shape analysis as a tool to infer the population structure of the blue jack mackerel, Trachurus picturatus, in the NE Atlantic. Fisheries Research. 209:40–48. DOI:10.1016/j.fishres.2018.09.010.
  • Moura RL, Gasparini JL, Sazima I. 1999. New records and range extensions of reef fishes in the Western South Atlantic, with notes on reef fish distribution on the Brazilian coast. Revista Brasileira de Zoologia. 16:513–530. DOI:10.1590/S0101-81751999000200017.
  • Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D. 2009. Population genomics of marine fishes: identifying adaptive variation in space and time. Molecular Ecology. 18:3128–3150. DOI:10.1111/j.1365-294X.2009.04272.x.
  • Nishimoto MM, Washburn L, Warner RR, Love MS, Paradis GL. 2010. Otolith elemental signatures reflect residency in coastal water masses. Environmental Biology of Fishes. 89(3-4):341–356. DOI:10.1007/s10641-010-9698-6.
  • Otterlei E, Folkvord A, Nyhammer G. 2002. Temperature dependent otolith growth of larval and early juvenile Atlantic cod (Gadus morhua). ICES Journal of Marine Science. 59:401–410. DOI:10.1006/jmsc.2001.1300
  • Patterson HM, Thorrold SR, Shenker JM. 1999. Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution-based ICP-MS. Coral Reefs. 18:171–178. DOI: 10.1007/s003380050176
  • Piñeros VJ, Gutiérrez-Rodríguez C. 2017. Population genetic structure and connectivity in the widespread coral-reef fish Abudefduf saxatilis: the role of historic and contemporary factors. Coral Reefs. 1–14. DOI:10.1007/s0033.
  • Piñeros VJ, Rios-Cardenas O, Gutiérrez-Rodríguez C, Mendoza-Cuenca L. 2015. Morphological differentiation in the dam- selfish Abudefduf saxatilis along Mexican Atlantic coast is associated with environmental factors and high connectivity. Evolutionary Biology. 42:235–249. DOI: 10.1007/s11692-015-9314-y
  • Ponton D. 2006. Is geometric morphometrics efficient for comparing otolith shape of different fish species? Journal of Morphology. 267(6):750–757. DOI:10.1002/jmor.10439.
  • Popper AN, Ramcharitar J, Campana SE. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology [review]. Marine and Freshwater Research. 56:479–504. DOI:10.1071/MF04267.
  • Rooker JR, Zdanowicz VS, Secor DH. 2001. Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Marine Biology. 139:35–43. DOI: 10.1007/s002270100568
  • Sale PF, Jones GP, Choat JH, Leis JM, Thresher RE, Williams DMCB. 1985. Current priorities in ecology of coral reef fishes. Sydney. Search-pages. 16:270–274.
  • Schunter C, Carreras-Carbonell J, Planes S, Ballesteros E, Zabala M, Harmelin JG, Harmelin-Vivien M, Macpherson E, Pascual M. 2011. Genetic connectivity patterns in an endangered species: the dusky grouper (Epinephelus marginatus). Journal of Experimental Marine Biology and Ecology. 401:126–133. DOI:10.1016/j.jembe.2011.01.021.
  • Shulman MJ, Bermingham E. 1995. Early life histories, ocean currents, and population genetics of Caribbean reef fishes. Evolution. 49:897–910. DOI:10.1111/j.1558-5646.1995.tb02325.x.
  • Sih TL, Kingsford MJ. 2016. Near-reef elemental signals in the otoliths of settling Pomacentrus amboinensis (Pomacentridae). Coral Reefs. 35(1):303–315. DOI:10.1007/s00338-015-1376-x.
  • Silva DM, Santos P, Correia AT. 2011. Discrimination of Trisopterus luscus stocks in northern Portugal using otolith elemental fingerprints. Aquatic Living Resources. 24(1):85–91. DOI:10.1051/alr/2011009.
  • Smith SJ, Campana SE. 2010. Integrated stock mixture analysis for continuous and categorical data, with application to genetic–otolith combinations. Canadian Journal of Fisheries Aquatic Sciences. 67:1533–1567. DOI:10.1139/F10-078.
  • Souza AS. 2017. Prospecção da biodiversidade críptica e padrões biogeográficos em peixes do litoral e ilhas oceânicas do Atlântico Ocidental [Ph.D. thesis]. Universidade Federal do Rio Grande do Norte, Natal; 108p.
  • Stransky C, MacLellan SE. 2005. Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences. 62(10):2265–2276. DOI:10.1139/f05-143.
  • Stransky C, Murta AG, Schlickeisen J, Zimmermann C. 2008. Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the northeast Atlantic and Mediterranean. Fisheries Research. 89:159–166. DOI:10.1016/j.fishres.2007.09.017.
  • Sturgeon RE, Willie SN, Yang L, Greenberg R, Spatz RO, Chen Z, Scriver C, Clancy V, Lam JW, Thorrold S. 2005. Certification of a fish otolith reference material in support of quality assurance for trace element analysis. Journal of Analytical Atomic Spectrometry. 20:1067–1071. DOI:10.1039/B503655K.
  • Sturrock AM, Trueman CN, Darnaude AM, Hunter E. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology. 81(2):766–795. DOI:10.1111/j.1095-8649.2012.03372.x.
  • Tanner SE, Pérez M, Presa P, Thorrold SR, Cabral HN. 2014. Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius). Estuarine, Coastal and Shelf Science. 142:68–75. DOI:10.1016/j.ecss.2014.03.010.
  • Thomas OR, Ganio K, Roberts BR, Swearer SE. 2017. Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics. 9(3):239–249. DOI:10.1039/C6MT00189K.
  • Tudela S. 1999. Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fisheries Research. 42:229–243. DOI:10.1016/S0165-7836(99)00052-1.
  • Tuset VM, Lombarte A, Gonzalez JA, Pertusa JF, Lorente MJ. 2003. Comparative morphology of the sagittal otolith in Serranus spp. Journal of Fish Biology. 63:1491–1504. DOI:10.1111/j.1095-8649.2003.00262.x.
  • Vignon M, Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series. 411:231–241. DOI:10.3354/meps08651.
  • Walther BD, Limburg KE, Jones CM, Schaffler JJ. 2017. Frontiers in otolith chemistry: insights, advances and applications. Journal of Fish Biology. 90(2):473–479. DOI:10.1111/jfb.13266.
  • Wellington GM, Victor BC. 1989. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Marine Biology. 101:557–567. DOI:10.1007/BF00541659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.