362
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Population structure of Chelidonichthys lucerna in Portugal mainland using otolith shape and elemental signatures

, , , , & ORCID Icon
Pages 500-512 | Received 18 Mar 2019, Accepted 25 Jun 2019, Published online: 18 Oct 2019

References

  • Adelir-Alves J, Daros FA, Spach HL, Soeth M, Correia AT. 2018. Otoliths as a tool to study reef fish population structure from coastal islands of South Brazil. Marine Biology Research. 14:973–988. doi: 10.1080/17451000.2019.1572194
  • Agüera A, Brophy D. 2011. Use of saggital otolith shape analysis to discriminate Northeast Atlantic and western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Research. 110:465–471. doi: 10.1016/j.fishres.2011.06.003
  • Arslan Z, Secor DH. 2005. Analysis of trace transition elements and heavy metals in fish otoliths as tracers of habitat use by American eels in the Hudson River estuary. Estuaries. 28:382–393. doi: 10.1007/BF02693921
  • Bacha M, Jeyid AM, Jaafour S, Yahyaoui A, Diop M, Amara R. 2016. Insights on stock structure of round sardinella Sardinella aurita off northwest Africa based on otolith shape analysis. Journal of Fish Biology. 89:2153–2166. doi: 10.1111/jfb.13117
  • Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta. 64:1705–1714. doi: 10.1016/S0016-7037(99)00419-6
  • Berg F, Almeland OW, Skadal J, Slotte A, Andersson L, Folkvord A. 2018. Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PLoS One. 13:e0190995. doi:10. 1371/journal.pone.0190995 doi: 10.1371/journal.pone.0190995
  • Campana SE. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series. 188:263–297. doi: 10.3354/meps188263
  • Campana SE. 2005. Otolith elemental composition as a natural marker of fish stocks. In: Cadrin SX, Friedland KD, Waldman JRS, editors. Stock identification methods. London: Academic Press; p. 227–245.
  • Campana SE, Casselman JM. 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences. 50:1062–1083. doi: 10.1139/f93-123
  • Campana SE, Chouinard GA, Hanson JM, Frechet A, Brattey J. 2000. Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research. 46:343–357. doi: 10.1016/S0165-7836(00)00158-2
  • Campana SE, Thorrold SR. 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences. 58:30–38. doi: 10.1139/f00-177
  • Campana SE, Valentin A, Sévigny JM, Power D. 2007. Tracking fish seasonal migrations of redfish (Sebastes spp.) in an around Gulf of St. Lawrence using otolith elemental fingerprints movements. Canadian Journal of Fisheries and Aquatic Sciences. 64:6–18. doi: 10.1139/f06-162
  • Capoccioni F, Costa C, Aguzzi J, Menesatti P, Lombarte A, Ciccotti E. 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) local stocks. Journal of Experimental Marine Biology Ecology. 397:1–7. doi: 10.1016/j.jembe.2010.11.011
  • Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences. 61:158–167. doi: 10.1139/f03-151
  • Carvalho BM, Vaz-dos-Santos AM, Spach HL, Volpedo AV. 2015. Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary. Scientia Marina. 79:409–418. doi: 10.3989/scimar.04218.31A
  • Castonguay M, Simard P, Cagnon P. 1991. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Canadian Journal of Fisheries and Aquatic Sciences. 48:296–302. doi: 10.1139/f91-041
  • Correia AT, Hamer P, Carocinho B, Silva A. 2014. Evidence for meta-population structure of Sardina pilchardus in the Atlantic Iberian waters from otoliths elemental signatures of a strong cohort. Fisheries Research. 149:76–85. doi: 10.1016/j.fishres.2013.09.016
  • Correia AT, Ramos AA, Barros F, Silva G, Hamer P, Morais P, Cunha RL, Castilho R. 2012. Population structure and connectivity of the European conger eel (Conger conger) across the Northeastern-Atlantic and western-Mediterranean: integrating molecular and otolith elemental approaches. Marine Biology. 159:1509–1525. doi: 10.1007/s00227-012-1936-3
  • Crampton JS. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia. 28:179–186. doi: 10.1111/j.1502-3931.1995.tb01611.x
  • Daros FA, Spach HL, Sial AN, Correia AT. 2016. Otolith fingerprints of the coral reef fish Stegastes fuscus in southeast Brazil: a useful tool for population and connectivity studies. Regional Studies in Marine Science. 3:1–20. doi: 10.1016/j.rsma.2015.11.012
  • D’Avignon G, Rose GA. 2013. Otolith elemental fingerprints distinguish Atlantic cod spawning areas in Newfoundland and Labrador. Fisheries Research. 147:1–9. doi: 10.1016/j.fishres.2013.04.006
  • Elsdon TS, Gillanders BM. 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences. 59:1796–1818. doi: 10.1139/f02-154
  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology – An Annual Review. 46:297–330.
  • FAO-Food and Agriculture Organization of the United Nations. 2017. Fisheries and Aquaculture Department, Species Fact Sheets, Chelidonichthys lucerna (Linnaeus, 1758). [accessed 2019 June 6]. http://www.fao.org/fishery/species/2530/en.
  • Ferguson GJ, Ward TM, Gillanders BM. 2011. Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fisheries Research. 110:75–83. doi: 10.1016/j.fishres.2011.03.014
  • Fischer W, Bianchi G, Scotts WB. 1981. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing area 34 and 47 (in part). Canada Funds-in-Trust, Ottawa, Department of Fisheries and Oceans, Canada by arrangement with the Food and Agricultural Organization of the United Nations. Vol. 4:244–245.
  • Fıúza AFG. 1984. Hidrologia e dinâmica das águas costeiras de Portugal. Doctor thesis, University of Lisbon, Lisbon.
  • Geffen AJ, Jarvis K, Thorpe JP, Leah RT, Nasha RDM. 2003. Spatial differences in the trace element concentrations of Irish Sea plaice Pleuronectes platessa and whiting Merlangius merlangus otoliths. Journal of Sea Research. 50:245–254. doi: 10.1016/j.seares.2003.06.001
  • Halden N, Friedrich LA. 2008. Trace-element distributions in fish otoliths: natural markers of life histories, environmental conditions and exposure to tailings effluence. Mineralogical Magazine. 72:593–605. doi: 10.1180/minmag.2008.072.2.593
  • Hamer PA, Jenkins GP, Coutin P. 2006. Barium variation in Pagrus auratus (Sparidae) otoliths: A potential indicator of migration between an embayment and ocean waters in south-eastern Australi. Estuarine, Coastal and Shelf Science. 68:686–702. doi: 10.1016/j.ecss.2006.03.017
  • Higgins R, Isidro E, Menezes G, Correia A. 2013. Otolith elemental signatures indicate population separation in deep-sea rockfish, Helicolenus dactylopterus and Pontinus kuhlii, from the Azores. Journal of Sea Research. 83:202–208. doi: 10.1016/j.seares.2013.05.014
  • INE-Instituto Nacional de Estatística. 2017. Estatísticas da Pesca 2016, 52.
  • Iwata H, Ukai Y. 2002. SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity. 93:384–385. doi: 10.1093/jhered/93.5.384
  • Jemaa S, Bacha M, Khalaf G, Dessailly D, Rabhi K, 427 Amara R. 2015. What can otolith shape analysis tell us about population structure of the European sardine, Sardina pilchardus, from Atlantic and Mediterranean waters? Journal of Sea Research. 96:11–17. doi: 10.1016/j.seares.2014.11.002
  • Kuhl FP, Giardina CR. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing. 18:236–258. doi: 10.1016/0146-664X(82)90034-X
  • Ladroit Y, Maolagáin CÓ, Horn PL. 2017. An investigation of otolith shape analysis as a tool to determine stock structure of ling (Genypterus blacodes). New Zealand Fisheries Assessment Report 2017/24, 16.
  • Limburg KE, Walther BD, Lu Z, Jackman G, Mohan J, Walther Y, Nissling A, Weber PK, Schmitt AK. 2015. In search of the dead zone: use of otoliths for tracking fish exposure to hypoxia. Journal of Marine Sciences. 141:167–178.
  • Linnaeus C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae. ii, 824. [accessed 2019 June 12]. http://www.biodiversitylibrary.org/item/10277#page/3/mode/1up.
  • Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S. 2010. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environmental Biology of Fishes. 89(3-4):591–605. doi: 10.1007/s10641-010-9674-1
  • Magalhães C, Costa J, Teixeira C, Bordalo AA. 2007. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal. Marine Chemistry. 107:332–341. doi: 10.1016/j.marchem.2007.02.005
  • Martins VA, Frontalini F, Tramonte KM, Figueira RC, Miranda P, Sequeira C, Fernández-Fernández S, Dias JA, Yamashita C, Renó R, et al. 2013. Assessment of the health quality of Ria de Aveiro (Portugal): heavy metals and benthic foraminifera. Marine Pollution Bulletin. 70:18–33. doi: 10.1016/j.marpolbul.2013.02.003
  • Mérigot B, Letourneur Y, Leconte-Finiger R. 2007. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Marine Biology. 151:997–1008. doi: 10.1007/s00227-006-0549-0
  • Montanini S, Stagioni M, Vallisneri M. 2010. Elliptic Fourier analysis of otoliths of Triglidae in the north-middle Adriatic Sea. Biologia Marina Mediterranea. 17(1):346–347.
  • Moreira C, Froufe E, Sial AN, Caeiro A, Vaz-Pires P, Correia AT. 2018. Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fisheries Research. 197:113–122. doi: 10.1016/j.fishres.2017.08.012
  • Moreira C, Froufe E, Sial AN, Caeiro A, Vaz-Pires P, Correia AT. 2019. Otolith shape analysis as a tool to infer the population structure of the blue Jack mackerel, Trachurus picturatus, in the NE Atlantic. Fisheries Research. 209:40–48. doi: 10.1016/j.fishres.2018.09.010
  • Nelson JS. 2006. Fishes of the World, 4th ed. Hoboken (NJ): John Wiley & Sons. xix + 601.
  • Olim S, Borges TC. 2006. Weight-length relationships for eight species of the family Triglidae discarded on the south coast of Portugal. Journal of Applied Ichthyology. 22:257–259. doi: 10.1111/j.1439-0426.2006.00644.x
  • Otero P, Ruiz-Villarreal M, Peliz A. 2008. Variability of river plumes off northwest Iberia in response to wind events. Journal Marine Systems. 72:238–255. doi: 10.1016/j.jmarsys.2007.05.016
  • Pardal M, Azeiteiro UM. 2001. Zooplankton biomass, abundance and diversity in a shelf area of Portugal (the Berlenga marine natural Reserve). Arquipélago. Life and Marine Sciences. 18A:25–33.
  • Patterson HM, Thorrold SR, Shenker JM. 1999. Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution based ICPMS. Coral Reefs. 18:171–178. doi: 10.1007/s003380050176
  • Pereira P, de Pablo H, Vale C, Rosa-Santos F, Cesário R. 2009. Metal and nutrient dynamics in a eutrophic coastal lagoon (Óbidos, Portugal): the importance of observations at different time scales. Environmental Monitoring Assessment. 158:405–418. doi: 10.1007/s10661-008-0593-y
  • Popper AN, Ramcharitar J, Campana SE. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research. 56:497–504. doi: 10.1071/MF04267
  • Pothin K, Gonzalez-Salas C, Chabanet P, Lecompte-Finiger R. 2006. Distinction between Mulloidichthys flavolineatus juveniles from Reunion Island and Mauritius Island (south-west Indian Ocean) based on otolith morphometrics. Journal of Fish Biology. 69:38–53. doi: 10.1111/j.1095-8649.2006.01047.x
  • Quinn GP, Keough MJ. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.
  • Ranaldi MM, Gagnon MM. 2008. Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): the influence of dietary versus waterborne sources. Journal of Experimental Marine Biology and Ecology. 360:56–62. doi: 10.1016/j.jembe.2008.03.013
  • Ranaldi MM, Gagnon MM. 2010. Trace metal incorporation in otoliths of pink snapper (Pagrus auratus) as an environmental monitor. Comparative Biochemistry and Physiology. 152(3):248–255.
  • Rasband WS. 2009. Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2016.
  • Reis-Santos P, Tanner SE, Elsdon TS, Cabral HN, Gillanders BM. 2013. Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology. 446:245–252. doi: 10.1016/j.jembe.2013.05.027
  • Richards WJ, Saksena VP. 1990. In J.C. Quero, J.C. Hureau, C. Karrer, A. Post and L. Saldanha (eds.) Check-list of the fishes of the eastern tropical Atlantic (CLOFETA). JNICT, Lisbon; SEI, Paris; and UNESCO, Paris, vol. 2, 680–684.
  • Rocha A, Feijó D, Gonçalves P. 2018. Gurnards: species landings’ composition in ICES Division 27.9a. Working Document presented at the Working Group on Widely Distributed Stocks (WGWIDE). doi:10.13140/RG.2.2.24277.47841.
  • Rocha A, Feijó D, Santos P. 2008. An insight on gurnard fisheries in North of Portugal. Foro Ac. Rec. Mar. Rías Gal. 10:609–615.
  • Rodriguez-Mendoza R. 2006. Otoliths and their applications in fishery science. Croatian Journal of Fisheries. 64(3):89–102.
  • Rooker JR, Zdanowicz VS, Secor DH. 2001. Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Marine Biology. 139:35–43. doi: 10.1007/s002270100568
  • Ruus A, Schaanning M, Øxnevad S, Hylland K. 2005. Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquatic Toxicology. 72:273–292. doi: 10.1016/j.aquatox.2005.01.004
  • Secor DH, Piccoli PM. 2007. Oceanic migration rates of Upper Chesapeake Bay striped bass (Morone saxatilis) determined by otolith microchemical analysis. Fishery Bulletin. 105:62–73.
  • Silva DM, Santos P, Correia AT. 2011. Discrimination of Trisopterus luscus stocks in the northern of Portugal using otolith elemental fingerprints. Aquatic Living Resources. 24:85–91. doi: 10.1051/alr/2011009
  • Simoneau M, Casselman JM, Fortin R. 2000. Determining the effect of negative allometry (length/height relationship) on variation in otolith shape in lake trout (Salvelinus namaycush), using Fourier-series analysis. Canadian Journal of Zoology. 78:1597–1603. doi: 10.1139/z00-093
  • Soeth M, Spach HL, Daros FA, Adelir-Alves J, Oliveria CA, Correia AT. 2019. Stock structure of Atlantic spadefish Chaetodipterus faber from Southwest Atlantic Ocean inferred from otolith elemental and shape signatures. Fisheries Research. 211:81–90. doi: 10.1016/j.fishres.2018.11.003
  • Stanley RRE, Bradbury IR, DiBacco C, Snelgrove PVR, Thorrold SR, Killen SS. 2015. Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES Journal of Marine Science. 72(8):2350–2363. doi: 10.1093/icesjms/fsv070
  • Stransky C, Baumann H, Fevolden SE, Harbitz A, Høie H, Nedreaas KH, Salberg AB, Skarstein TH. 2008. Separation of Norwegian coastal cod and Northeast Arctic cod by outer otolith shape analysis. Fisheries Research. 90:26–35. doi: 10.1016/j.fishres.2007.09.009
  • Sturrock AM, Trueman CN, Darnaude AM, Hunter E. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology. 81:766–795. doi: 10.1111/j.1095-8649.2012.03372.x
  • Thomas OR, Ganio K, Roberts BR, Swearer SE. 2017. Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics. 9(3):239–249. doi: 10.1039/C6MT00189K
  • Turner SM, Limburg KE. 2015. Does daily growth affect the rate of manganese uptake in juvenile river herring otoliths? Transactions of the American Fisheries Society. 144(5):873–881. doi: 10.1080/00028487.2015.1059888
  • Tuset VM, Lozano IJ, Gonzalez JA, Pertusa JF, Garcia-Diaz MM. 2003. Shape indices to identify regional differences in otolith morphology of comber Serranus cabrilla (L., 1758). Journal of Applied Ichthyology. 19:88–93. doi: 10.1046/j.1439-0426.2003.00344.x
  • Vasconcelos R, Reis-Santos P, Tanner S, Maia A, Latkoczy C, Günther D, Costa MJ, Cabral H. 2008. Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints. Estuarine, Coastal and Shelf Science. 79:317–327. doi: 10.1016/j.ecss.2008.04.006
  • Vieira AR, Neves A, Sequeira V, Paiva RB, Gordo LS. 2014. Otolith shape analysis as a tool for stock discrimination of forkbeard (Phycis phycis) in the Northeast Atlantic. Hydrobiologia. 728:103–110. doi: 10.1007/s10750-014-1809-5
  • Vieira MEC, Bordalo AA. 2000. The Douro estuary (Portugal): a mesotidal salt wedge. Oceanologica Acta. 23:585–594. doi: 10.1016/S0399-1784(00)01107-5
  • Vignon M. 2015. Disentangling and quantifying sources of otolith shape variation across multiple scales using a new hierarchical partitioning approach. Marine Ecology Progress Series. 534:163–177. doi: 10.3354/meps11376
  • Volpedo A, Vaz-dos-Santos A. 2015. Métodos de estudios con otolitos: principios y aplicaciones/Métodos de estudos com otólitos: princípios e aplicações. 1ª edição bilíngue, Buenos Aires.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.