1,568
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dark CO2 fixation into phospholipid-derived fatty acids by the cold-water coral associated sponge Hymedesmia (Stylopus) coriacea (Tisler Reef, NE Skagerrak)

, , , , &
Pages 1-17 | Received 13 Jul 2019, Accepted 27 Nov 2019, Published online: 08 Jan 2020

References

  • Alonso-Saez L, Galand PE, Casamayor EO, Pedros-Alio C, Bertilsson S. 2010. High bicarbonate assimilation in the dark by Arctic bacteria. The ISME Journal. 4:1581–1590. doi: 10.1038/ismej.2010.69
  • Bligh EG, Dyer WJ. 1959. A rapid method for total lipid extraction and purification. Canadian Journal Biochemistry and Physiology. 37:911–917. doi:10.1139/y59-099 doi: 10.1139/o59-099
  • Boschker HTS, de Brouwer JFC, Cappenberg TE. 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnology and Oceanography. 44:309–319. doi: 10.4319/lo.1999.44.2.0309
  • Boschker HTS, Middelburg JJ. 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology Ecology. 40:85–95. doi: 10.1111/j.1574-6941.2002.tb00940.x
  • Boschker HTS, Vasquez-Cardenas D, Bolhuis H, Moerdijk-Poortvliet TWC, Moodley L. 2014. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments. PlosOne. 9:e101443. doi: 10.1371/journal.pone.0101443
  • Blumenberg M. 2003. Biomarker aus Kaltwasser- und Tiefseekieselschwammen.phylogenie, Chemotaxonomie und chemische Ökologie der Demospongiae und der Hexactinellida [PhD thesis]. Hamburg, Universität Hamburg.
  • Blumer M, Chase T, Watson SW. 1969. Fatty acids in the lipids of marine and terrestrial nitrifying bacteria. Journal Bacteriology. 99:366–370. doi: 10.1128/JB.99.2.366-370.1969
  • Buhl-Mortensen L, Buhl-Mortensen P. 2004. Symbiosis in deep water corals. Symbiosis. 37:33–61.
  • Camargo JA, Alonso A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International. 32:831–849. doi: 10.1016/j.envint.2006.05.002
  • Carballeira N, Thompson JE, Ayanoglu E, Djerassi C. 1986. Biosynthetic studies of marine lipids. 5.1 The biosynthesis of long-chain branched fatty acids in marine sponges. Journal Organic Chemistry. 51:2751–2756. doi: 10.1021/jo00364a024
  • Cardoso JFMF, Van Bleijswijk JDL, Witte H, Van Duyl FC. 2013. Diversity and abundance of ammonia oxidizing archaea and bacteria in tropical and cold-water coral reef sponges. Aquatic Microbial Ecology. 68:215–230. doi: 10.3354/ame01610
  • De Goeij JM, Moodley L, Houtekamer M, Carballeira NM, Van Duyl FC. 2008. Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria containing coral reef sponge Halisarca caerulea: Evidence for DOM-feeding. Limnology and Oceanography. 53:1376–1386. doi: 10.4319/lo.2008.53.4.1376
  • Diaz MC, Ward BB. 1997. Sponge-mediated nitrification in tropical benthic communities. Marine Ecology Progress Series. 156:97–107. doi: 10.3354/meps156097
  • Dijkhuizen L, Harder W. 2000. Microbial metabolism of carbon dioxide. In: Dalton H, editor. Comprehensive bio/technology. Oxford: Pergamon Press Ltd; p. 409–423.
  • Djerassi C, Lam W-K. 1991. Sponge phospholipids. Accounts of Chemical Research. 24:69–75. doi: 10.1021/ar00003a002
  • Feisthauer S, Wick LY, Kastner M, Kaschabek SR, Schloman M, Richnow HH. 2008. Differences of heterotrophic 13CO2 assimilation by Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope probing. Environmental Microbiology. 10:1641–1651. doi: 10.1111/j.1462-2920.2008.01573.x
  • Freeman CJ, Thacker RW. 2011. Complex interactions between marine sponges and their symbiotic microbial communities. Limnology and Oceanography. 56:1577–1586. doi: 10.4319/lo.2011.56.5.1577
  • Fromont J, Huggett MJ, Lengger SK, Grice K, Schönberg CHL. 2015. Characterization of Leucetta prolifera, a calcarean cyanosponge from south-western Australia, and its symbionts. Journal of the Marine Biological Association of the United Kingdom. 96:541–552. doi:10.1017/S0025315415000491.
  • Gillan FT, Stoilov IL, Thompson JE, Hogg RW, Wilkinson CR. 1988. Fatty acids as biological markers for bacterial symbionts in sponges. Lipids. 23:1139–1145. doi: 10.1007/BF02535280
  • Gold DA, O’Reilly SS, Watson J, Degnan BM, Degnan SM, Krömer JO, Summons RE. 2017. Lipidomics of the sea sponge Amphimedon queenslandica and implication for biomarker geochemistry. Geobiology. 15:835–843. doi: 10.1111/gbi.12253
  • Hahn S, Stoilov IL, Tam Ha TB, Raederstorff D, Doss GA, Li H-T, Djerassi C. 1988. Biosynthetic studies of marine lipids. 17.1 The course of chain elongation and desaturation in long-chain fatty acids of marine sponges. Journal American Chemical Society. 110:8117–8124. doi: 10.1021/ja00232a025
  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF. 2006. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLOS Biology. 4:520–536. doi: 10.1371/journal.pbio.0040095
  • Hentschel U, Piel J, Degnan SM, Taylor MW. 2012. Genomic insights into the marine sponge biome. Nature Reviews Microbiology. 10:641–654. doi: 10.1038/nrmicro2839
  • Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy M-L, Schleper C, Kuypers MM. 2009. Complex nitrogen cycling in the sponge Geodia barretti. Environmental Microbiology. 11:2228–2243. doi: 10.1111/j.1462-2920.2009.01944.x
  • Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe Damsté JS, Schouten S. 2006. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Organic Geochemistry. 37:1036–1041. doi:10.1016/j.orggeochem.2006.05.008.
  • Jackson SA, Flemer B, McCann A, Kennedy J, Morrissey JP, O’Gara F, Dobson ADW. 2013. Archaea appear to dominate the microbiome of inflatella pellicula deep sea sponges. PlosOne. 8:e84438. doi: 10.1371/journal.pone.0084438
  • Kazanidis G, van Oevelen D, Veuger B, Witte UFM. 2018. Unravelling the versatile feeding and metabolic strategies of the cold-water ecosystem engineer Spongosorites coralliophaga (Stephens, 1915). Deep-Sea Research Part I: Oceanographic Research Papers 141:71-82.
  • Kaneda T. 1991. Iso- and Anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiological Reviews. 55:288–302. doi: 10.1128/MMBR.55.2.288-302.1991
  • Kornprobst J-M, Barnathan G. 2010. Demospongic acids revisited. Marine Drugs. 8:2569–2577. doi: 10.3390/md8102569
  • Koopmans M, Van Rijswijk P, Martens D, Egorova-Zachernyuk TA, Middelburg JJ, Wijffels RH. 2011. Carbon conversion and metabolic rate in two marine sponges. Marine Biology. 158:9–20. doi: 10.1007/s00227-010-1538-x
  • Koopmans M, Van Rijswijk P, Boschker HTS, Houtekamer M, Martens D, Wijffels RH. 2015. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified. Marine Biotechnology. 17:43–54. doi: 10.1007/s10126-014-9594-8
  • Kutti T, Bannister RJ, Fosså JH, Krogness CM, Tjensvoll I, Søvik G. 2015. Metabolic responses of the deep-water sponge Geodia barretti to suspended bottom sediment, simulated mine tailings and drill cuttings. Journal of Experimental Marine Biology and Ecology. 473:64–72. doi: 10.1016/j.jembe.2015.07.017
  • Lafi FF, Fuerst JA, Fieseler L, Engels C, Wei Ling Goh W, Hentschel U. 2009. Widespread distribution of Poribacteria in Demospongiae. Applied Environmental Microbiology. 75:5695–5699. doi: 10.1128/AEM.00035-09
  • Lavaleye MSS, Duineveld GCA, Lundälv T, White M, Guihen D, Kiriakoulakis K, Wolff GA. 2009. Cold water corals on Tisler reef: Preliminary observations on the dynamic reef environment. Oceanography. 22:76–84. doi: 10.5670/oceanog.2009.08
  • Lengger SK, Hopmans EC, Sinninghe Damsté JS, Schouten S. 2012. Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments. Organic Geochemistry. 47:34–40. doi: 10.1016/j.orggeochem.2012.02.009
  • Lengger SK, Lipsewers YA, de Haas H, Sinninghe Damsté JS, Schouten S. 2014. Lack of 13C-label incorporation suggests low turnover rates of thaumarchaeal intact polar tetraether lipids in sediments from the Iceland shelf. Biogeosciences. 11:201–216. doi:10.5194/bg-11-201-2014.
  • Li Z-Y, Wang Y-Z, He L-M, Zheng H-J. 2014. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics. Scientific Reports. 4:3895. doi: 10.1038/srep03895
  • Lipski A, Spieck E, Makolla A, Altendorf K. 2001. Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity. System Applied Microbiology. 24:377–384. doi: 10.1078/0723-2020-00049
  • Litchfield C, Greenberg AJ, Noto G, Morales RW. 1976. Unusually high levels of C24−C30 fatty acids in sponges of the class Desmospongiae. Lipids. 11:567–570. doi: 10.1007/BF02532903
  • Marie D, Partensky F, Jacquet S, Vaulot D. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green I. Applied Environmental Microbiology. 63:186–193. doi: 10.1128/AEM.63.1.186-193.1997
  • Meyer B, Kuever J. 2008. Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis. Microbial Ecology. 56:306–321. doi: 10.1007/s00248-007-9348-5
  • Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip C. 2000. The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnology and Oceanography. 45:1224–1234. doi: 10.4319/lo.2000.45.6.1224
  • Middelburg JJ, Mueller CE, Veuger B, Larsson AI, Form A, Van Oevelen D. 2015. Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Scientific Reports. 5:17962. doi: 10.1038/srep17962
  • Mishra PM, Sree A, Panda PK. 2015. Fatty acids of marine sponges. In: Kim S-K, editor. Handbook of marine biotechnology. Berlin, Heidelberg: Springer; p. 851–868.
  • Moodley L, Boschker HTS, Middelburg JJ, Pel R, Herman PMJ, Heip CHR. 2000. Ecological significance of benthic foraminifera: 13C labelling experiments. Marine Ecology Progress Series. 202:289–295. doi: 10.3354/meps202289
  • Morales RW, Litchfield C. 1977. Incorporation of 1-14C-acetate into C26 fatty acids of the marine sponge Microciona prolifera. Lipids. 12:570–576. doi: 10.1007/BF02533383
  • Mueller CE, Larsson AI, Veuger B, Middelburg JJ, Van Oevelen D. 2014. Opportunistic feeding on various organic food resources by the cold-water coral Lophelia pertusa. Biogeosciences. 11:123–133. doi: 10.5194/bg-11-123-2014
  • Pape T, Blumenberg M, Thiel V, Michaelis W. 2004. Biphytanes as biomarkers for sponge associated archaea. In: Pansini M, Pronzato R, Bavestrello G, Manconi R, Sarà M, editor. Sponge Science in the New Millenium. Genua: Bollettino dei Musei e degli Istituti Biologici dell'Universitá di Genova 68. p. 509–515.
  • Preston CM, Wu KY, Miolinski TF, DeLong EF. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proceedings of the National Academy of Sciences. 93:6241–6246. doi: 10.1073/pnas.93.13.6241
  • Radax R, Hoffmann F, Rapp HT, Leininger S, Schleper C. 2012. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water. Environmental Microbiology. 4:909–923. doi:10.1111/j.1462-2920.2011.02661.x.
  • Raederstorff D, Shu AYL, Thompson JE, Djerassi C. 1987. Biosynthetic studies of marine lipids. 11.1 synthesis, biosynthesis, and absolute configuration of the internally branched demospongic acid, 22-methyl-5,9-octacosadienoic acid. Journal Organic Chemistry. 52:2337–2346. doi: 10.1021/jo00388a001
  • Rix L, De Goeij JM, Mueller CE, Struck U, Middelburg JJ, van Duyl FC, Al-Horani FA, Wild C, Naumann MS, van Oevelen D. 2016a. Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Scientific Reports. 6:18715. doi: 10.1038/srep18715
  • Rix L, De Goeij JM, Van Oevelen D, Struck U, Al-Horani FA, Wild C, Naumann MS. 2016b. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Functional Ecology. 31:778–789. doi: 10.1111/1365-2435.12758
  • Roslev P, Brøndum M, Jørgensen D, Hesselhoe M. 2004. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. Journal Microbiological Methods. 59:381–393. doi: 10.1016/j.mimet.2004.08.002
  • Rush D, Sinninghe Damsté JS. 2017. Lipids as paleomarkers to constrain the marine nitrogen cycle. Environmental Microbiology. 19:2119–2132. doi: 10.1111/1462-2920.13682
  • Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Prahl FG, Wakeham SG, Schouten S. 2002. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea. Applied Environmental Microbiology. 68:2997–3002. doi: 10.1128/AEM.68.6.2997-3002.2002
  • Schouten S, Hoefs MJL, Koopmans MP, Bosch H-J, Sinnighe Damsté JS. 1998. Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Organic Geochemistry. 29:1305–1319. doi: 10.1016/S0146-6380(98)00131-4
  • Schouten S, Huguet C, Hopmans EC, Kienhuis MVM, Sinninghe Damsté JS. 2007. Analytical methodology for TEX 86 paleothermometry by High-Performance Liquid Chromatography/atmospheric Pressure Chemical Ionization-mass Spectrometry. Analytical Chemistry. 79:2940–2944. Doi:10.1021/ac062339v.
  • Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, Dandekar T, Hentschel U. 2011. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME Journal. 5:61–70. doi: 10.1038/ismej.2010.95
  • Simister RL, Deines P, Botte ES, Webster NS, Taylor MW. 2012. Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environmental Microbiology. 14:517–524. doi: 10.1111/j.1462-2920.2011.02664.x
  • Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Wakeham SG, Prahl FG, Schouten S. 2002. Distribution of intact core ether lipids of planktonic Crenarchaeota in the Arabian Sea. Applied Environmental Microbiology. 68:2997–3002. doi: 10.1128/AEM.68.6.2997-3002.2002
  • Stoll MHC, Bakker K, Nobbe GH, Haese RR. 2001. Continuous-flow analysis of dissolved inorganic carbon content in seawater. Analytical Chemistry. 73:4111–4116. doi: 10.1021/ac010303r
  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C. 2010. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends in Microbiology. 18:331–340. doi: 10.1016/j.tim.2010.06.003
  • Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews. 71:295–347. doi: 10.1128/MMBR.00040-06
  • Thacker RW. 2005. Impacts of shading on sponge-cyanobacteria symbioses: A comparison between host-specific and generalist associations. Integrative and Comparative Biology. 45:369–376. doi: 10.1093/icb/45.2.369
  • Thacker RW, Freeman CJ. 2012. Sponge-microbe symbioses: recent advances and new directions. Advances in Marine Biology. 62:57–111. doi: 10.1016/B978-0-12-394283-8.00002-3
  • Thiel V, Jenisch A, Wörheide G, Lowenberg A, Reitner J, Michaelis W. 1999. Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids? Organic Chemistry. 30:1–14.
  • Tjensvoll I, Kutti T, Fosså JH, Bannister RJ. 2013. Rapid respiratory responses of the deep-water sponge Geodia barretti exposed to suspended sediments. Aquatic Biology. 19:65–73. doi: 10.3354/ab00522
  • Usher KM. 2008. The ecology and phylogeny of cyanobacterial symbionts in sponges. Marine Ecology Progress Series. 29:178–192. doi: 10.1111/j.1439-0485.2008.00245.x
  • Van der Meer MTJ, Schouten S, Bateson MM, Nübel U, Wieland A, Kühl M, De Leeuw JW, Sinninghe Damsté JS, Ward DM. 2005. Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park. Applied and Environmental Microbiology. 71:3978–3986. doi: 10.1128/AEM.71.7.3978-3986.2005
  • Van der Meer MTJ, Schouten S, Sinninghe Damsté JS, Ward DM. 2007. Impact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA). Environmental Microbiology. 9:482–491. doi: 10.1111/j.1462-2920.2006.01165.x
  • Van Duyl FC, Hegeman J, Hoogstraten A, Maier C. 2008. Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Marine Ecology Progress Series. 358:137–150. doi: 10.3354/meps07370
  • Van Duyl FC, Moodley L, Nieuwland G, Van Ijzerloo L, Van Soest RWM, Houtekamer M, Meesters EH, Middelburg JJ. 2011. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints. Marine Biology. 158:1653–1666. doi: 10.1007/s00227-011-1681-z
  • Van Gaever S, Moodley L, Pasotti F, Houtekamer M, Middelburg JJ, Danovaro R, Vanreusel A. 2009. Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. Marine Biology. 156:1289–1296. doi: 10.1007/s00227-009-1170-9
  • Van Oevelen D, Mueller CE, Lundälv T, Van Duyl FC, De Goeij JM, Middelburg JJ. 2018. Niche overlap between a cold-water coral and an associated sponge for isotopically-enriched particulate food sources. PLoS One. 13:e0194659. doi: 10.1371/journal.pone.0194659
  • Van Soest RWM, De Voogd NJ. 2015. Sponge species composition of north-east Atlantic cold-water coral reefs compared in a bathyal to inshore gradient. Journal of the Marine Biological Association of the United Kingdom. 95:1461–1474. doi: 10.1017/S0025315413001410
  • Veuger B, Pitcher A, Schouten S, Sinninghe Damsté JS, Middelburg JJ. 2013. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea. Biogeosciences. 10:1775–1785. doi: 10.5194/bg-10-1775-2013
  • Volkman JK, Johns B, Gillan FT, Perry JF, Bavor JrHJ. 1980. Microbial lipids of an intertidal sediment-I. fatty acids and hydrocarbons. Geochimica Cosmochimica Acta. 44:1133–1143. doi: 10.1016/0016-7037(80)90067-8
  • Walkup RD, Jamieson GC, Ratcliff MR, Djerassi C. 1981. Phospholipid studies of marine organisms: 2.1. phospholipids, phospholipid-bound fatty acids and free sterols of the sponge Aplysina fistularis (Pallas) forma fulva (Pallas) (=verongia thiona) 2. Isolation and structure elucidation of unprecedented branched fatty acids. Lipids. 16:631–646. doi: 10.1007/BF02535058
  • Webster NS, Taylor MW. 2012. Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology. 14:335–346. doi: 10.1111/j.1462-2920.2011.02460.x
  • Webster NS, Thomas T. 2016. The sponge Hologenome. mBio. 7:e00135–00116. doi: 10.1128/mBio.00135-16
  • Weisz JB, Hentschel U, Lindquist N, Martens CS. 2007. Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Marine Biology. 152:475–483. doi: 10.1007/s00227-007-0708-y
  • Weisz JB, Massaro AJ, Ramsby BD, Hill MS. 2010. Zooxanthellate symbionts shape host sponge trophic status through translocation of carbon. Biological Bulletin. 219:189–197. doi: 10.1086/BBLv219n3p189
  • Wilkinson C, Fay P. 1979. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature. 279:527–529. doi: 10.1038/279527a0
  • Wuchter C, Schouten S, Boschker HTS, Sinninghe Damste J. 2003. Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiology Letters. 219:203–207. doi: 10.1016/S0378-1097(03)00060-0
  • Xie S, Lipp JS, Wegener G, Ferdelman TG, Hinrichs K-U. 2013. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations. Proceedings of the National Academy of Sciences. 110:6010–6014. doi:10.1073/pnas.1218569110.