191
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Phylogenetic conservatism of abiotic niche in sympatric Southwestern Atlantic skates

ORCID Icon, &
Pages 458-473 | Received 18 Jun 2020, Accepted 09 Oct 2020, Published online: 26 Nov 2020

References

  • Aguirre-Gutiérrez J, Serna-Chavez HM, Villalobos-Arambula AR, Perez de la Rosa JA, Raes N. 2015. Similar but not equivalent: ecological niche comparison across closely–related Mexican white pines. Diversity and Distributions. 21(3):245–257. doi:10.1111/ddi.12268.
  • Ahmadzadeh F, Flecks M, Rödder D, Böhme W, Ilgaz Ç, Harris DJ, Engler JO, Üzüm N, Carretero MA. 2013. Multiple dispersal out of Anatolia: biogeography and evolution of oriental green lizards. Biological Journal of the Linnean Society. 110(2):398–408. doi:10.1111/bij.12129.
  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. 2015. Spthin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 38(5):541–545. doi:10.1111/ecog.01132.
  • Alvarado-Serrano DF, Knowles LL. 2014. Ecological niche models in phylogeographic studies: applications, advances and precautions. Molecular Ecology Resources. 14:233–248. doi:10.1111/1755-0998.12184.
  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O. 2018. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography. 27(3):277–284. doi:10.1111/geb.12693.
  • Ball RE, Serra-Pereira B, Ellis J, Genner MJ, Iglésias S, Johnson AF, Jones CS, Leslis R, Lewis J, Mariani S, et al. 2016. Resolving taxonomic uncertainty in vulnerable elasmobranchs: are the Madeira skate (Raja maderensis) and the thornback ray (Raja clavata) distinct species? Conservation Genetics. 17:565–576. doi:10.1007/s10592-015-0806-1.
  • Barbini SA, Lucifora LO. 2011. Feeding habits of the Rio skate, Rioraja agassizi (Chondrichthyes: Rajidae), from off Uruguay and north Argentina. Journal of the Marine Biological Association of the United Kingdom. 91(6):1175–1184. doi:10.1017/S0025315410001529.
  • Barbini SA, Lucifora LO. 2012. Feeding habits of a large endangered skate from the south-west Atlantic: the spotback skate, Atlantoraja castelnaui. Marine and Freshwater Research. 63:180–188. doi:10.1071/MF11170.
  • Barbini SA, Lucifora LO. 2016. Diet composition and feeding habits of the eyespot skate, Atlantoraja cyclophora (Elasmobranchii: Arhynchobatidae), off Uruguay and northern Argentina. Neotropical Ichthyology. 14(3). doi:10.1590/1982-0224-20160032.
  • Barbini SA, Sabadin DE, Lucifora LO. 2018. Comparative analysis of feeding habits and dietary niche breadth in skates: the importance of body size, snout length, and depth. Reviews in Fish Biology and Fisheries. 28:625–636. doi:10.1007/s11160–018–9522–5.
  • Blomberg SP, Garland Jr T, Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 57(4):717–745. doi:10.1111/j.0014-3820.2003.tb00285.x.
  • Bovcon ND, Cochia PD, Góngora ME, Gosztonyi AE. 2011. New records of warm-temperate water fishes in central Patagonian coastal waters (Southwestern South Atlantic Ocean). Journal of Applied Ichthyology. 27(3):832–839. doi:10.1111/j.1439-0426.2010.01594.x.
  • Brandini FP, Boltovskoy D, Piola A, Kocmur S, Röttgers R, Abreu PC, Lopes RM. 2000. Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30-62°S). Deep Sea Research Part I: Oceanographic Research Papers. 47(6):1015–1033. doi:10.1016/S0967-0637(99)00075-8.
  • Broennimann O, Fitzpatrick MC, Pearman PB, Petipierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography. 21(4):481–497. doi:10.1111/j.1466-8238.2011.00698.x.
  • Broughton RE, Reneau PC. 2006. Spatial covariation of mutation and nonsynonymous substitution rates in vertebrate mitochondrial genomes. Molecular Biology and Evolution. 23:1516–1524. doi:10.1093/molbev/msl013.
  • Buckley LB, Davies TJ, Ackerly DD, Kraft NJ, Harrison SP, Anacker BL, Cornell HV, Damschen EI, Grytnes JA, Hawkins BA, et al. 2010. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proceedings of the Royal Society B: Biological Sciences. 277(1691):2131–2138. doi:10.1098/rspb.2010.0179.
  • Buser TJ, Finnegan DL, Summers AP, Kolmann MA. 2019. Have niche, will travel: new means of linking diet and ecomorphology reveals niche conservatism in freshwater cottoid fishes. Integrative Organismal Biology. 1(1):obz023. doi:10.1093/iob/obz023.
  • Chessel D, Dufour AB, Thioulouse J. 2004. The ade4 package-I-One-table methods. R News. 4(1):5–10.
  • Chivers WJ, Walne AW, Hays GC. 2017. Mismatch between marine plankton range movements and the velocity of climate change. Nature Communications. 8(1):1–8. doi:10.1038/ncomms14434.
  • Colonello JH, García ML, Lasta CA. 2007. Reproductive biology of Rioraja agassizi from the coastal southwestern Atlantic ecosystem between northern Uruguay (34°S) and northern Argentina (42°S). Environmental Biology of Fishes. 80:277–284. doi:10.1007/s10641-007-9239-0.
  • CRIA. 2020. specieslink. Available from: http://www.splink.org.br.
  • Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP. 2009. Phylogenetic biome conservatism on a global scale. Nature. 458:754–756. doi:10.1038/nature07764.
  • da Silva AR, Malafaia G, Menezes IPP. 2017. biotools: an R function to predict spatial gene diversity via an individual-based approach. Genetics and Molecular Research. 16(2). doi:gmr16029655.
  • da Silva D, Aires AE, Zurano JP, Olalla-Tárraga MA, Martinez PA. 2020. Changing only slowly: the role of phylogenetic niche conservatism in Caviidae (Rodentia) speciation. Journal of Mammalian Evolution. 1–9. doi:10.1007/s10914-020-09501-0.
  • Daru BH, Holt BG, Lessard JP, Yessoufou K, Davies TJ. 2017. Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages. Biological Conservation. 213:351–356. doi:10.1016/j.biocon.2016.08.022.
  • Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, et al. 2017. Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography. 40(6):774–787. doi:10.1111/ecog.02671.
  • Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK, Davidson LNK, Fordham SV, Francis MP, et al. 2014. Extinction risk and conservation of the world’s sharks and rays. elife. 3:e00590. doi:10.7554/eLife.00590.001.
  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal. 4(3):337–345. doi:10.1038/ismej.2009.122.
  • Ebert DA, Compagno LJV. 2007. Biodiversity and systematics of skates (Chondrichthyes: Rajiformes: Rajoidei). Environmental Biology of Fishes. 80:111–124. doi:10.1007/s10641-007-9247-0.
  • Estalles M, Coller NM, Perier MR, Di Giácomo EE. 2011. Skates in the demersal trawl fishery of San Matías Gulf: species composition, relative abundance and maturity stages. Aquatic Living Resources. 24(2):193–199. doi:10.1051/alr/2011119.
  • Field IC, Meekan MG, Buckworth RC, Bradshaw CJ. 2009. Susceptibility of sharks, rays and chimaeras to global extinction. Advances in Marine Biology. 56:275–363. doi:10.1016/S0065-2881(09)56004-X.
  • Figueiredo JL. 1977. Manual de peixes marinhos do sudeste e sul do Brasil. I. Introdução, tubarões, raias e quimeras. São Paulo: Museu de Zoologia da Universidade de São Paulo.
  • Fishnet2 Portal. 2017. Fish data used in this study obtained from the National Museum of Natural History [cited 2018 Aug]. Available from www.fishnet2.net.
  • Fourcade Y, Besnard AG, Secondi J. 2018. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography. 27(2):245–256. doi:10.1111/geb.12684.
  • GBIF.org. 2020. GBIF Home Page. Available from: https://www.gbif.org.
  • Gomes UL, Signori CN, Gadig OBF, Santos HRS. 2010. Guia para identificação de tubarões e raias do Rio de Janeiro, 1st ed. Rio de Janeiro: Technical Books.
  • Graham CH, Storch D, Machac A. 2018. Phylogenetic scale in ecology and evolution. Global Ecology and Biogeography. 27(2):175–187. doi:10.1111/geb.12686.
  • Green L, Jutfelt F. 2014. Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biology Letters. 10:20140538. doi:10.1098/rsbl.2014.0538.
  • Grinnell J. 1917. The niche-relationships of the California Thrasher. Auk. 34(4):427–433. doi:10.2307/4072271.
  • Harmon JP, Moran NA, Ives AR. 2009. Species response to environmental change: impacts of food web interactions and evolution. Science. 323(5919):1347–1350. doi:10.1126/science.1167396.
  • Harvey PH, Pagel MD. 1991. The comparative method in evolutionary biology. Vol. 239. Oxford: Oxford University Press.
  • Hopkins MJ, Simpson C, Kiessling W. 2014. Differential niche dynamics among major marine invertebrate clades. Ecology Letters. 17:314–323. doi:10.1111/ele.12232.
  • Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics. 46:523–549. doi:10.1146/annurev-ecolsys-112414-054400.
  • Hozbor N, Massa AM, Vooren CM. 2004. Atlantoraja castelnaui. IUCN Red List of Threatened Species. Version 2012.
  • Jolliffe IT, Cadima J. 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374(2065). doi:10.1098/rsta.2015.0202.
  • Khaliq I, Fritz SA, Prinzinger R, Pfenninger M, Böhning-Gaese K, Hof C. 2015. Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. Journal of Biogeography. 42(11):2187–2196. doi:10.1111/jbi.12573.
  • Kneitel JM. 2008. Gauses’s competitive exclusion principle. In: Jørgensen SE, Fath BD, editors. Encyclopedia of ecology. Amsterdam: Elsevier; p. 1731–1734.
  • Kozak KH, Wiens JJ. 2010. Niche conservatism drives elevational diversity patterns in Appalachian salamanders. The American Naturalist. 176(1):40–54. doi:10.1086/653031.
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33(7):1870–1874. doi:10.1093/molbev/msw054.
  • Kyne PM, San Martín J, Stehmann MFW. 2007. Rioraja agassizii. The IUCN Red List of Threatened Species. Version 2007.
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. 2007. Clustal w and Clustal X version 2.0. Bioinformatics. 23(21):2947–2948. doi:10.1093/bioinformatics/btm404.
  • Last PR, Stehmann MFW, Séret B, Weigmann S. 2016. Softnose skates: family Arhynchobatidae. In: Last P, Naylor G, Séret B, White W, de Carvalho M, Stehmann M, editors. Rays of the world. Clayton South: CSIRO; p. 364–472.
  • Losos JB, Leal M, Glor RE, de Queiroz K, Hertz PE, Schettino LR, Lara AC, Jackman TR, Larson A. 2003. Niche lability in the evolution of a Caribbean lizard community. Nature. 424(6948):542–545. doi:10.1038/nature01814.
  • Lovette IJ, Hochachka WM. 2006. Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure. Ecology. 87(sp7):S14–S28. doi:10.1890/0012-9658(2006)87[14:SEOPNC]2.0.CO;2.
  • Lu HP, Yeh YC, Shiah FK, Gong GC, Hsieh CH. 2019. Evolutionary constraints on species diversity in marine bacterioplankton communities. The ISME Journal. 13(4):1032–1041. doi:10.1038/s41396-018-0336-1.
  • Luo A, Qiao H, Zhang Y, Shi W, Ho SY, Xu W, Zhang A, Zhu C. 2010. Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets. BMC Evolutionary Biology. 10:242. doi:10.1186/1471-2148-10-242.
  • Martin AP, Naylor GJP, Palumbi SR. 1992. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature. 357:153–155. doi:10.1038/357153a0.
  • Massa A, Hozbor NM. 2004. Sympterygia acuta. The IUCN Red List of Threatened Species. Version 2013.1.
  • Massa A, Hozbor NM, Vooren CM. 2006. Atlantoraja cyclophora. The IUCN Red List of Threatened Species. Version 2006.
  • Matich P, Kiszka JJ, Mourier J, Planes S, Heithaus MR. 2017. Species co-occurrence affects the trophic interactions of two juvenile reef shark species in tropical lagoon nurseries in Moorea (French Polynesia). Marine Environmental Research. 127:84–91. doi:10.1016/j.marenvres.2017.03.010.
  • McEachran JD, Dunn KA. 1998. Phylogenetic analysis of skates, a morphologically conservative clade of elasmobranchs (Chondrichthyes: Rajidae). Copeia. 1998:271–290. doi:10.2307/1447424.
  • Menni RC, Jaureguizar AJ, Stehmann MF, Lucifora LO. 2010. Marine biodiversity at the community level: zoogeography of sharks, skates, rays and chimaeras in the southwestern Atlantic. Biodiversity and Conservation. 19:775–796. doi:10.1007/s10531-009-9734-z.
  • Merow C, Smith MJ, Silander Jr JA. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography. 36(10):1058–1069. doi:10.1111/j.1600-0587.2013.07872.x.
  • Moore AB, White WT, Ward RD, Naylor GJ, Peirce R. 2011. Rediscovery and redescription of the smoothtooth blacktip shark, Carcharhinus leiodon (Carcharhinidae), from Kuwait, with notes on its possible conservation status. Marine and Freshwater Research. 62(6):528–539. doi:10.1071/MF10159.
  • Moreira RA, Gomes UL, de Carvalho MR. 2017. Clasper morphology of skates of the tribe Riorajini (Chondrichthyes: Rajiformes: Arhynchobatidae) and its systematic significance. Journal of Morphology. 278(9):1185–1196. doi:10.1002/jmor.20703.
  • Morinière J, Van Dam MH, Hawlitschek O, Bergsten J, Michat MC, Hendrich L, Ribera I, Toussaint EFA, Balke M. 2016. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Scientific Reports. 6(1):1–12. doi:10.1038/srep26340.
  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP. 2014. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for maxent ecological niche models. Methods in Ecology and Evolution. 5(11):1198–1205. doi:10.1111/2041-210X.12261.
  • Naylor GJP, Caira JN, Jensen K, Rosana KAM, White WT, Last PR. 2012a. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History. 367:1–262. doi:10.1206/754.1.
  • Naylor GJP, Caira JN, Jensen K, Rosana KAM, Straube N, Lakner C. 2012b. Elasmobranch phylogeny: a mitochondrial estimate based on 595 species. In: Carrier CC, Musick JA, Heithaus MR, editors. Biology of sharks and their relatives. 2nd ed. Boca Raton (FL): CRC Press; Chapter 2. p. 31–56.
  • Nicolas D, Chaalali A, Drouineau H, Lobry J, Uriarte A, Borja A, Boët P. 2011. Impact of global warming on European tidal estuaries: some evidence of northward migration of estuarine fish species. Regional Environmental Change. 11(3):639–649. doi:10.1007/s10113-010-0196-3.
  • Oddone MC, Amorim AF. 2007. Length-weight relationships, condition and population structure of the genus Atlantoraja (Elasmobranchii, Rajidae, Arhynchobatinae) in Southeastern Brazilian waters, SW Atlantic Ocean. Journal of Northwest Atlantic Fishery Science. 38:43–52. doi:10.2960/J.v38.m599.
  • Oddone MC, Capapé C. 2011. Annual fecundity assessment for the Rio skate Rioraja agassizi (Chondrichthyes: Arhynchobatidae) endemic to a neotropical area (Southeastern Brazil). Brazilian Journal of Oceanography. 59(3):277–279. doi:10.1590/S1679-87592011000300008.
  • Oddone MC, Vooren CM. 2004. Distribution, abundance and morphometry of Atlantoraja cyclophora (Regan, 1903) (Elasmobranchii: Rajidae) in southern Brazil, southwestern Atlantic. Neotropical Ichthyology. 2(3):137–144. doi:10.1590/S1679-62252004000300005.
  • Oddone MC, Vooren CM. 2005. Reproductive biology of Atlantoraja cyclophora (Regan 1903) (Elasmobranchii: Rajidae) off southern Brazil. ICES Journal of Marine Science. 62:1095–1103. doi:10.1016/j.icesjms.2005.05.002.
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’hara RB, Simpsom GL, Solymos P, et al. 2013. Package ‘vegan’. Community Ecology Package. 2(9):1–295.
  • Ortego J, Riordan EC, Gugger PF, Sork VL. 2012. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Molecular Ecology. 21:3210–3223. doi:10.1111/j.1365-294X.2012.05591.x.
  • Paesch L, Norbis W, Inchausti P. 2014. Effects of fishing and climate variability on spatio-temporal dynamics of demersal chondrichthyans in the Río de la Plata, SW Atlantic. Marine Ecology Progress Series. 508:187–200. doi:10.3354/meps10878.
  • Paradis E, Schliep K. 2019. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics (oxford, England). 35(3):526–528. doi:10.1093/bioinformatics/bty633.
  • Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 421(6918):37–42. doi:10.1038/nature01286.
  • Parolo G, Rossi G, Ferrarini A. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology. 45(5):1410–1418. doi:10.1111/j.1365-2664.2008.01516.x.
  • Patterson TB, Givnish TJ. 2002. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: insights from rbcL and ndhF sequence data. Evolution. 56(2):233–252. doi:10.1111/j.0014-3820.2002.tb01334.x.
  • Pearson RG. 2007. Species’ distribution modeling for conservation educators and practitioners. Synthesis. AMNH. 50:54–89.
  • Peixoto FP, Villalobos F, Cianciaruso MV. 2017. Phylogenetic conservatism of climatic niche in bats. Global Ecology and Biogeography. 26(9):1055–1065. doi:10.1111/geb.12618.
  • Perry AL, Low PJ, Ellis JR, Reynolds JD. 2005. Climate change and distribution shifts in marine fishes. Science. 308(5730):1912–1915. doi:10.1126/science.1111322.
  • Peterson AT. 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography. 38(5):817–827. doi:10.1111/j.1365-2699.2010.02456.x.
  • Peterson AT, Soberón J, Sánchez-Cordero V. 1999. Conservatism of ecological niches in evolutionary time. Science. 285(5431):1265–1267. doi:10.1126/science.285.5431.1265.
  • Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190(3-4):231–259. doi:10.1016/j.ecolmodel.2005.03.026.
  • Pigot AL, Tobias JA. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters. 16(3):330–338. doi:10.1111/ele.12043.
  • Pistevos JC, Nagelkerken I, Rossi T, Olmos M, Connell SD. 2015. Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports. 5:16293. doi:10.1038/srep16293.
  • Prinzing A, Durka W, Klotz S, Brandl R. 2001. The niche of higher plants: evidence for phylogenetic conservatism. PNAS. 268(1483):2383–2389. doi:10.1098/rspb.2001.1801.
  • Pyron AR, Costa GC, Patten MA, Burbrink FT. 2015. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews. 90(4):1248–1262. doi:10.1111/brv.12154.
  • QGIS Development Team. 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. [cited 2019 Apr]. Available from: http://qgis.osgeo.org.
  • Quintero I, Wiens JJ. 2013. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters. 16(8):1095–1103. doi:10.1111/ele.12144.
  • R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [cited 2018 Aug]. Available from: https://www.R-project.org/.
  • Rambaut A, Drummond AJ. 2012. FigTree version 1.4.0. [cited 2019 Aug]. Available from: https://github.com/rambaut/figtree/releases.
  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology. 67(5):901–904. doi:10.1093/sysbio/syy032.
  • Rinnan DS, Lawler J. 2019. Climate-niche factor analysis: a spatial approach to quantifying species vulnerability to climate change. Ecography. 42(9):1494–1503. doi:10.1111/ecog.03937.
  • Ripa J. 2019. Ecology and macroevolution–evolutionary niche monopolisation as a mechanisms of niche conservatism. Oikos. 128(3):380–391. doi:10.1111/oik.05672.
  • Rocha LA, Robertson DR, Roman J, Bowen BW. 2005. Ecological speciation in tropical reef fishes. Proceedings of the Royal Society B: Biological Sciences. 272:573–579. doi:10.1098/2004.3005.
  • Rödder D, Lötters S. 2009. Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Global Ecology and Biogeography. 18(6):674–687. doi:10.1111/j.1466-8238.2009.00477.x.
  • Rosenfeld JS. 2002. Functional redundancy in ecology and conservation. Oikos. 98(1):156–162. doi:10.1034/j.1600-0706.2002.980116.x.
  • San Martín JM, Stehmann MFW, Kyne PM. 2007. Atlantoraja platana. The IUCN Red List of Threatened Species. Version 2007.
  • Sánchez-Fernández D, Lobo JM, Hernández-Manrique OL. 2011. Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles. Diversity and Distributions. 17:163–171. doi:10.1111/j.1472-4642.2010.00716.x.
  • Sbrocco EJ, Barber PH. 2013. MARSPEC: ocean climate layers for marine spatial ecology. Ecology. 94(4):979–979. doi:10.1890/12-1358.1.
  • Scriven JJ, Whitehorn PR, Goulson D, Tinsley MC. 2016. Niche partitioning in a sympatric cryptic species complex. Ecology and Evolution. 6(5):1328–1339. doi:10.1002/ece3.1965.
  • Seeliger U, Odebrecht C, Castello JP, editors. 1998. Os ecossistemas costeiro e marinho do extremo sul do Brasil. Rio Grande: Ecoscientia.
  • Shcheglovitova M, Anderson RP. 2013. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecological Modelling. 269:9–17. doi:10.1016/j.ecolmodel.2013.08.011.
  • Smith KF, Brown JH. 2002. Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth. Global Ecology and Biogeography. 11(4):313–322. doi:10.1046/j.1466-822X.2002.00286.x.
  • Soberón J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters. 10:1115–1123. doi:10.1111/j.1461-0248.2007.01107.x.
  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MAX, Halpern BS, Jorge MA, Lombana AL, Lourie SA, et al. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience. 57(7):573–583. doi:10.1641/B570707.
  • Stein RW, Mull CG, Kuhn TS, Aschliman NC, Davidson LN, Joy JB, Smith GJ, Dulvy NK, Mooers AO. 2018. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nature Ecology & Evolution. 2(2):288–298. doi:10.1038/s41559-017-0448-4.
  • Stevens JD, Bonfil R, Dulvy NK, Walker PA. 2000. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES Journal of Marine Science. 57(3):476–494. doi:10.1006/jmsc.2000.0724.
  • Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution. 4(1). doi:10.1093/ve/vey016.
  • Temunović M, Franjić J, Satovic Z, Grgurev M, Frascaria-Lacoste N, Fernández-Manjarrés JF. 2012. Environmental heterogeneity explains the genetic structure of continental and Mediterranean populations of Fraxinus angustifolia Vahl. PLoS One. 7(8):e42764. doi:10.1371/journal.pone.0042764.
  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography. 21(2):272–281. doi:10.1111/j.1466-8238.2011.00656.x.
  • Viana AF, Valentin JL, Vianna M. 2017. Feeding ecology of elasmobranch species in southeastern Brazil. Neotropical Ichthyology. 15(2):e160176. doi:10.1590/1982-0224-20160176.
  • Viana AF, Vianna M. 2014. The feeding habits of the eyespot skate Atlantoraja cyclophora (Elasmobranchii: Rajiformes) in southeastern Brazil. Zoologia (Curitiba). 31(2):119–125. doi:10.1590/S1984-46702014000200003.
  • Wang M, Liu F, Lin P, Yang S, Liu H. 2015. Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits. Ecology and Evolution. 5(3):567–577. doi:10.1002/ece3.1386.
  • Warren DL, Glor RE, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution. 62(11):2868–2883. doi:10.1111/j.1558-5646.2008.00482.x.
  • Warren DL, Wright AN, Seifert SN, Shaffer HB. 2014. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions. 20(3):334–343. doi:10.1111/ddi.12160.
  • Weigmann S. 2016. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. Journal of Fish Biology. 88(3):837–1037. doi:10.1111/jfb.12874.
  • Wielstra B, Beukema W, Arntzen JW, Skidmore AK, Toxopeus AG, Raes N. 2012. Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS One. 7(9):e46671. doi:10.1371/journal.pone.0046671.
  • Wiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics. 36:519–539. doi:10.1146/annurev.ecolsys.36.102803.095431.
  • Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution. 1(1):3–14. doi:10.1111/j.2041-210X.2009.00001.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.