520
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A comparison of bacterial communities from OMZ sediments in the Arabian Sea and the Bay of Bengal reveals major differences in nitrogen turnover and carbon recycling potential

ORCID Icon & ORCID Icon
Pages 656-673 | Received 19 Aug 2020, Accepted 18 Oct 2020, Published online: 16 Dec 2020

References

  • Arango CP, Tank JL, Schaller JL, Royer TV, Bernot MJ, David MB. 2007. Benthic organic carbon influences denitrification in streams with high nitrate concentration. Freshwater Biology. 52(7):1210–1222. doi:10.1111/j.1365-2427.2007.01758.x.
  • Azam F, Sajjad M. 2005. Colorimetric determination of organic carbon in soil by dichromate digestion in a microwave oven. Pakistan Journal of Biological Sciences. 8(4):596–598. doi:10.3923/pjbs.2005.596.598.
  • Bernard BB, Bernard H, Brooks JM. 1995. Determination of total carbon, total organic carbon and inorganic carbon in sediments TDI-Brooks International/B&B Labratories Inc. College Station (pp. 1–5).
  • Bertics VJ, Löscher CR, Salonen I, Dale AW, Gier J, Schmitz RA, Treude T. 2013. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences. 10:1243–1258. doi:10.5194/bg-10-1243-2013.
  • Bhushan R, Dutta K, Somayajulu B. 2001. Concentrations and burial fluxes of organic and inorganic carbon on the eastern margins of the Arabian Sea. Marine Geology. 178(1):95–113. doi:10.1016/S0025-3227(01)00179-7.
  • Bohlen L, Dale AW, Sommer S, Mosch T, Hensen C, Noffke A, Scholz F, Wallmann K. 2011. Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone. Geochimica et Cosmochimica Acta. 75(20):6094–6111. doi:10.1016/j.gca.2011.08.010.
  • Bristow LA, Callbeck CM, Larsen M, Altabet MA, Dekaezemacker J, Forth M, Gauns M, Glud RN, Kuypers MM, Lavik G. 2017. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nature Geoscience. 10(1):24–29. doi:10.1038/ngeo2847.
  • Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, Littmann S, Schoffelen NJ, Kalvelage T, Thomsen S. 2018. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nature Communications. 9(1):1729–1740. doi:10.1038/s41467-018-04041-x.
  • Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science. 330(6009):1375–1378. doi:10.1126/science.1196889.
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 7(5):335–336. doi:10.1038/nmeth.f.303.
  • Choi H, Koh H-W, Kim H, Chae J-C, Park S-J. 2016. Microbial community composition in the marine sediments of Jeju Island: next-generation sequencing surveys. Journal of Microbiology and Biotechnology. 26(5):883–890. doi:10.4014/jmb.1512.12036.
  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y-W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology. 57(10):2259–2261. doi:10.1099/ijs.0.64915-0.
  • Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O'Toole PW. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research. 38(22):e200. doi:10.1093/nar/gkq873.
  • Cowie G, Mowbray S, Kurian S, Sarkar A, White C, Anderson A, Vergnaud B, Johnstone G, Brear S, Woulds C. 2014. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope. Biogeosciences. 11(23):6683–6696. doi:10.5194/bg-11-6683-2014.
  • Dale AW, Sommer S, Bohlen L, Treude T, Bertics VJ, Bange HW, Pfannkuche O, Schorp T, Mattsdotter M, Wallmann K. 2011. Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter (Boknis Eck, SW Baltic Sea): sensitivity to environmental variables. Estuarine, Coastal and Shelf Science. 95(1):14–28. doi:10.1016/j.ecss.2011.05.016.
  • Dang H, Zhang X, Sun J, Li T, Zhang Z, Yang G. 2008. Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology. 154(7):2084–2095. doi:10.1099/mic.0.2007/013581-0.
  • de Voogd NJ, Cleary DF, Polónia AR, Gomes NC. 2015. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiology Ecology. 91(4):fiv019. doi:10.1093/femsec/fiv019.
  • Devol AH. 2015. Denitrification, anammox, and N2 production in marine sediments. Annual Review of Marine Science. 7:403–423. doi:10.1146/annurev-marine-010213-135040.
  • Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science. 321(5891):926–929. doi:10.1126/science.1156401.
  • Divya B, Parvathi A, Bharathi PL, Nair S. 2011. 16S rRNA-based bacterial diversity in the organic-rich sediments underlying oxygen-deficient waters of the eastern Arabian Sea. World Journal of Microbiology and Biotechnology. 27(12):2821–2833. doi:10.1007/s11274-011-0760-0.
  • Dyksma S, Lenk S, Sawicka JE, Mußmann M. 2018. Uncultured gammaproteobacteria and desulfobacteraceae account for major acetate assimilation in a coastal marine sediment. Frontiers in Microbiology. 9:3124–3124. doi:10.3389/fmicb.2018.03124.
  • Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26(19):2460–2461. doi:10.1093/bioinformatics/btq461.
  • Eschbach M, Schreiber K, Trunk K, Buer J, Jahn D, Schobert M. 2004. Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. Journal of Bacteriology. 186(14):4596–4604. doi:10.1128/JB.186.14.4596-4604.2004.
  • Fernandes GL, Shenoy BD, Menezes LD, Meena RM, Damare SR. 2019. Prokaryotic diversity in oxygen depleted waters of the Bay of Bengal inferred using culture-dependent and-independent methods. Indian Journal of Microbiology. 59(2):193–199. doi:10.1007/s12088-019-00786-1.
  • Fernandes S, Mazumdar A, Bhattacharya S, Peketi A, Mapder T, Roy R, Carvalho MA, Roy C, Mahalakshmi P, Da Silva R. 2018. Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center. Scientific Reports. 8(1):8665–8680. doi:10.1038/s41598-018-27002-2.
  • Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America. 103(3):626–631. doi:10.1073/pnas.0507535103.
  • Froelich PN, Klinkhammer G, Bender Maa, Luedtke N, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta. 43(7):1075–1090. doi:10.1016/0016-7037(79)90095-4.
  • Fuchs BM, Woebken D, Zubkov MV, Burkill P, Amann R. 2005. Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea. Aquatic Microbial Ecology. 39(2):145–157. doi:10.3354/ame039145.
  • Fulweiler RW, Nixon SW, Buckley BA, Granger SL. 2007. Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature. 448:180–182. doi:10.1038/nature05963.
  • Ganesh S, Parris DJ, DeLong EF, Stewart FJ. 2014. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. The ISME Journal. 8(1):187–211. doi:10.1038/ismej.2013.144.
  • Gerdes G, Klenke T, Noffke N. 2000. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology. 47(2):279–308. doi:10.1046/j.1365-3091.2000.00284.x.
  • Gier J, Löscher CR, Dale AW, Sommer S, Lomnitz U, Treude T. 2017. Benthic dinitrogen fixation traversing the oxygen minimum zone off Mauritania (NW Africa). Frontiers in Marine Science. 4(390):Article 390. doi:10.3389/fmars.2017.00390.
  • Gier J, Sommer S, Löscher CR, Dale AW, Schmitz RA, Treude T. 2016. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences. 13(14):4065–4080. doi:10.5194/bg-13-4065-2016.
  • Glöckner FO, Fuchs BM, Amann R. 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Environmental Microbiology. 65:3721–3726. doi:10.1128/aem.65.8.3721-3726.
  • Heaton L, Fullen MA, Bhattacharyya R. 2016. Critical analysis of the van Bemmelen conversion factor used to convert soil organic matter data to soil organic carbon data: comparative analyses in a UK loamy sand soil. Espaço Aberto. 6(1):35–44. doi:10.36403/espacoaberto.2016.5244.
  • Hodkinson BP, Grice EA. 2015. Next-generation sequencing: a review of technologies and tools for wound microbiome research. Advances in Wound Care. 4(1):50–58. doi:10.1089/wound.2014.0542.
  • Horn MA, Ihssen J, Matthies C, Schramm A, Acker G, Drake HL. 2005. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. International Journal of Systematic and Evolutionary Microbiology 55(3):1255–1265. doi:10.1099/ijs.0.63484-0.
  • Im W-T, Hu Z-Y, Kim K-H, Rhee S-K, Meng H, Lee S-T, Quan Z-X. 2012. Description of Fimbriimonas ginsengisoli gen. nov., sp. nov. within the Fimbriimonadia class nov., of the phylum Armatimonadetes. Antonie van Leeuwenhoek. 102(2):307–317. doi:10.1007/s10482-012-9739-6.
  • Iwai S, Weinmaier T, Schmidt BL, Albertson DG, Poloso NJ, Dabbagh K, DeSantis TZ. 2016. Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One. 11(11):e0166104. doi:10.1371/journal.pone.0166104.
  • Janssen PH. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology. 72(3):1719–1728. doi:10.1128/AEM.72.3.1719-1728.2006.
  • Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B, Jetten MS, Kuypers MM. 2011. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. The ISME Journal. 5(10):1660–1670. doi:10.1038/ismej.2011.44.
  • Krause S, Liebetrau V, Löscher CR, Böhm F, Gorb S, Eisenhauer A, Treude T. 2018. Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation. Geochimica et Cosmochimica Acta. 243:116–132. doi:10.1016/j.gca.2018.09.018.
  • Kümmel S, Herbst F-A, Bahr A, Duarte M, Pieper DH, Jehmlich N, Seifert J, von Bergen M, Bombach P, Richnow HH, Vogt C. 2015. Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiology Ecology. 91(3):13. doi:10.1093/femsec/fiv006.
  • Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 31(9):814–821. doi:10.1038/nbt.2676.
  • Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB. 2007. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environmental Microbiology. 9(1):131–142. doi:10.1111/j.1462-2920.2006.01122.x.
  • Liu J, Sun F, Wang L, Ju X, Wu W, Chen Y. 2014. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions. Microbial Biotechnology. 7(1):64–76. doi:10.1111/1751-7915.12097.
  • Long C, Lu X-L, Gao Y, Jiao B-H, Liu X-Y. 2011. Description of a Sulfitobacter strain and its extracellular cyclodipeptides. Evidence-Based Complementary and Alternative Medicine. 2011:24–29. doi:10.1155/2011/393752.
  • Löscher CR, Mohr W, Bange HW, Canfield DE. 2020. No nitrogen fixation in the Bay of Bengal? Biogeosciences. 17(4):851–864. doi:10.5194/bg-17-851-2020.
  • Luo H, Moran MA. 2015. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends in Microbiology. 23(9):577–584. doi:10.1016/j.tim.2015.05.004.
  • Lv X, Yu J, Fu Y, Ma B, Qu F, Ning K, Wu H. 2014. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. The Scientific World Journal. 2014:1–12. doi:10.1155/2014/437684.
  • Madigan M, Cox SS, Stegeman RA. 1984. Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. Journal of Bacteriology. 157(1):73–78. doi:10.1128/JB.157.1.73-78.1984.
  • Maltby J, Sommer S, Dale AW, Treude T. 2016. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin. Biogeosciences. 13(1):283–299. doi:10.5194/bg-13-283-2016.
  • Manske AK, Glaeser J, Kuypers MM, Overmann J. 2005. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Applied and Environmental Microbiology. 71(12):8049–8060. doi:10.1128/AEM.71.12.8049-8060.2005.
  • McCreary Jr JP, Yu Z, Hood RR, Vinaychandran P, Furue R, Ishida A, Richards KJ. 2013. Dynamics of the Indian-Ocean oxygen minimum zones. Progress in Oceanography. 112-113:15–37. doi:10.1016/j.pocean.2013.03.002.
  • Meyers PA. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology. 114:289–302. doi:10.1016/0009-2541(94)90059-0.
  • Mußmann M, Pjevac P, Krüger K, Dyksma S. 2017. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. The ISME Journal. 11(5):1276–1281. doi:10.1038/ismej.2016.185.
  • Naqvi SWA, Lam P, Narvenkar G, Sarkar A, Naik H, Pratihary A, Shenoy DM, Gauns M, Kurian S, Damare S. 2018. Methane stimulates massive nitrogen loss from freshwater reservoirs in India. Nature Communications. 9(1):1265–1274. doi:10.1038/s41467-018-03607-z.
  • Naqvi SWA, Naik H, Pratihary A, D'Souza W, Narvekar P, Jayakumar D, Devol A, Yoshinari T, Saino T. 2006. Coastal versus open-ocean denitrification in the Arabian Sea. Biogeosciences. 3(4):621–633. doi:10.5194/bg-3-621-2006.
  • Narayan NR, Weinmaier T, Laserna-Mendieta EJ, Claesson MJ, Shanahan F, Dabbagh K, Iwai S, DeSantis TZ. 2020. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC Genomics. 21(1):1–12. doi:10.1186/s12864-020-6537-9.
  • Nelson D, Sommers L. 1982. Total carbon, organic carbon, and organic matter. In: Page AL, editor. Methods of soil analysis Part 2. Chemical and microbiological properties. Vol. 2. Madison (WI): American Society of Agronomy, Soil Science Society of America; p. 539–579. doi:10.2134/agronmonogr9.2.c38.
  • Okubo T, Ikeda S, Yamashita A, Terasawa K, Minamisawa K. 2009. Pyrosequence read length of 16S rRNA gene affects phylogenetic assignment of plant-associated bacteria. Microbes and Environments. 27(2):204–208. doi:10.1264/jsme2.ME11258.
  • Orsi WD, Coolen MJL, Wuchter C, He L, More KD, Irigoien X, Chust G, Johnson C, Hemingway JD, Lee M, et al. 2017. Climate oscillations reflected within the microbiome of Arabian Sea sediments. Scientific Reports. 7(1):6040. doi:10.1038/s41598-017-05590-9.
  • Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Ramírez EG, Benson CR, Bourbonnais A, Altabet MA, Girguis PR, Thamdrup B. 2016. NC10 bacteria in marine oxygen minimum zones. The ISME Journal. 10(8):2067. doi:10.1038/ismej.2015.262.
  • Pattan J, Mir IA, Parthiban G, Karapurkar SG, Matta V, Naidu P, Naqvi S. 2013. Coupling between suboxic condition in sediments of the western Bay of Bengal and southwest monsoon intensification: a geochemical study. Chemical Geology. 343:55–66. doi:10.1016/j.chemgeo.2013.02.011.
  • Paulmier ADR-P. 2009. Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography. 80:113–128. doi:10.1016/j.pocean.2008.08.001.
  • Penton CR, Devol AH, Tiedje JM. 2006. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Applied and Environmental Microbiology. 72(10):6829–6832. doi:10.1128/AEM.01254-06.
  • Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart G-J, Damsté JSS. 2011. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. The ISME Journal. 5(12):1896. doi:10.1038/ismej.2011.60.
  • Pramanik A, Basak P, Banerjee S, Sengupta S, Chattopadhyay D, Bhattacharyya M. 2016. Metagenomic exploration of the bacterial community structure at Paradip Port, Odisha, India. Genomics Data. 7:94–96. doi:10.1016/j.gdata.2015.12.005.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 41(D1):D590–D596. doi:10.1093/nar/gks1219.
  • Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 12(1):38. doi:10.1186/1471-2105-12-38.
  • Rajpathak SN, Banerjee R, Mishra PG, Khedkar AM, Patil YM, Joshi SR, Deobagkar DD. 2018. An exploration of microbial and associated functional diversity in the OMZ and non-OMZ areas in the Bay of Bengal. Journal of Biosciences. 43(4):635–648. doi:10.1007/s12038-018-9781-2.
  • Ramaswamy V, Gaye B. 2006. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers. 53(2):271–293. doi:10.1016/j.dsr.2005.11.003.
  • Ramos HC, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, Glaser P, Jahn D. 2000. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. Journal of Bacteriology. 182(11):3072–3080. doi:10.1128/JB.182.11.3072-3080.2000.
  • Robinson RS, Kienast M, Luiza Albuquerque A, Altabet M, Contreras S, De Pol Holz R, Dubois N, Francois R, Galbraith E, Hsu TC. 2012. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography. 27(4). doi:10.1029/2012PA002321.
  • Sarkar A, Naqvi SWA, Lavik G, Pratihary A, Naik H, Shirodkar G, Kuypers MM. 2020. Massive nitrogen loss over the western Indian continental shelf during seasonal anoxia: evidence from isotope pairing technique. Frontiers in Marine Science. 7(678):1–14. doi:10.3389/fmars.2020.00678.
  • Sarma V, Krishna M, Viswanadham R, Rao G, Rao V, Sridevi B, Kumar B, Prasad V, Subbaiah CV, Acharyya T. 2013. Intensified oxygen minimum zone on the western shelf of Bay of Bengal during summer monsoon: influence of river discharge. Journal of Oceanography. 69(1):45–55. doi:10.1007/s10872-012-0156-2.
  • Sarma V, Kumar MD, Saino T. 2007. Impact of sinking carbon flux on accumulation of deep-ocean carbon in the Northern Indian Ocean. Biogeochemistry. 82(1):89–100. doi:10.1007/s10533-006-9055-1.
  • Schimel JP, Schaeffer SM. 2015. Microbial control over carbon cycling in soil. Frontiers in Microbiology. 3:348–358. doi:10.3389/fmicb.2012.00348.
  • Schlitzer R. 2015. Data analysis and visualization with Ocean Data View. Canadian Meteorological and Oceanographic Society Bulletin SCMO. 43(1):9–13. hdl:10013/epic.45187.d001
  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. 75(23):7537–7541. doi:10.1128/AEM.01541-09.
  • Schunck H, Lavik G, Desai DK, Großkopf T, Kalvelage T, Löscher CR, Paulmier A, Contreras S, Siegel H, Holtappels M. 2013. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS One. 8(8):e68661. doi:10.1371/journal.pone.0068661.
  • Shao M-F, Zhang T, Fang HH-P. 2010. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Applied Microbiology and Biotechnology. 88(5):1027–1042. doi:10.1007/s00253-010-2847-1.
  • Shirodkar G, Naqvi SWA, Naik H, Pratihary AK, Kurian S, Shenoy DM. 2018. Methane dynamics in the shelf waters of the West coast of India during seasonal anoxia. Marine Chemistry. 203:55–63. doi:10.1016/j.marchem.2018.05.001.
  • Sorokin DY. 1995. Sulfitobacter pontiacus gen. nov., sp. nov. – a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology. 64(3):295. doi:10.1007/s12275-019-9150-3.
  • Stewart FJ, Ulloa O, DeLong EF. 2012. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environmental Microbiology. 14(1):23–40. doi:10.1111/j.1462-2920.2010.02400.x.
  • Suh S-S, Park M, Hwang J, Lee S, Moh SH, Park KH, Lee T-K. 2014. Characterization of bacterial communities associated with seasonal water masses from Tongyoung in South Sea of Korea. Ocean Science Journal. 49(3):193–200. doi:10.1007/s12601-014-0019-4.
  • Ulloa O, Wright JJ, Belmar L, Hallam SJ. 2013. Pelagic oxygen minimum zone microbial communities. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F., editors. The Prokaryotes. Berlin: Springer; p. 113–122. doi:10.1007/978-3-642-30123-0_45.
  • van der Weijden CH, Reichart GJ, Visser HJ. 1999. Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea. Deep Sea Research Part I: Oceanographic Research Papers. 46(5):807–830. doi:10.1016/S0967-0637(98)00093-4.
  • Van Goethem MW, Makhalanyane TP, Cowan DA, Valverde A. 2017. Cyanobacteria and Alphaproteobacteria may facilitate cooperative interactions in niche communities. Frontiers in Microbiology. 8:2099. doi:10.3389/fmicb.2017.02099.
  • Varki A, Gagneux P. 2017. Biological functions of glycans (Essentials of glycobiology) [Internet]. 3rd ed. New York: Cold Spring Harbor Laboratory Press.
  • Wang Y, Sheng H-F, He Y, Wu J-Y, Jiang Y-X, Tam NF-Y, Zhou H-W. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Applied and Environmental Microbiology. 78(23):8264–8271. doi:10.1128/AEM.01821-12.
  • Ward B, Devol A, Rich J, Chang B, Bulow S, Naik H, Pratihary A, Jayakumar A. 2009. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature. 461(7260):78–81. doi:10.1038/nature08276.
  • Wegner C-E, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, Glöckner FO, Harder J. 2013. Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Marine Genomics. 9:51–61. doi:10.1016/j.margen.2012.12.001.
  • West NJ, Schönhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, Scanlan DJ. 2001. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology. 147(7):1731–1744. doi:10.1099/00221287-147-7-1731.
  • Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham W-R, Lünsdorf H, Timmis KN, Golyshin PN. 2003. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. International Journal of Systematic and Evolutionary Microbiology. 53(3):779–785. doi:10.1099/ijs.0.02366-0.
  • Yanagibayashi M, Nogi Y, Li L, Kato C. 1999. Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiology Letters. 170(1):271–279. doi:10.1111/j.1574-6968.1999.tb13384.x.
  • Yu Z, Wang X, Han G, Liu X, Zhang E. 2018. Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary. Scientific Reports. 8(1):1–10. doi:10.1038/s41598-018-29200-4.
  • Zhu D, Tanabe S-H, Yang C, Zhang W, Sun J. 2013. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes. PLoS One. 8(10):e78501. doi:10.1371/journal.pone.0078501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.