1,975
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Temperature-related timing of the spring bloom and match between phytoplankton and zooplankton

&
Pages 674-682 | Received 27 Jan 2020, Accepted 30 Oct 2020, Published online: 08 Dec 2020

References

  • Aberle N, Bauer B, Lewandowska A, Gaedke U, Sommer U. 2012. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Marine Biology. 159:2441–2453. DOI:10.1007/s00227-012-1947-0.
  • Almén A-K, Glippa O, Petterson H, Alenius P, Engström-Öst J. 2017. Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers. Environmental Monitoring and Assessment. 189:147. DOI:10.1007/s10661-017-5840-7.
  • Apollonio S, Matrai P. 2011. Marine primary production in the Canadian Arctic, 1956, 1961–1963. Polar Biology. 34:767–774. DOI:10.1007/s00300-010-0928-3.
  • BACC II Author Team. 2015. Second assessment of climate change for the Baltic Sea Basin. New York: Springer-Verlag. DOI:10.1007/978-3-319-16006-1.
  • Belkin I. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography. 81:207–213. DOI:10.1016/j.pocean.2009.04.011.
  • Carstensen J, Andersen JH, Gustafsson BG, Conley DJ. 2014. Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences of the United States of America. 111:5628–5633. DOI:10.1073/pnas.1323156111.
  • Edwards M, Richardson AJ. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 430:881–884. DOI:10.1038/nature02808.
  • Elovaara S, Degerlund M, Franklin D, Kaartokallio H, Tamelander T. 2020. Seasonal variation in estuarine phytoplankton viability and its relationship with carbon dynamics in the Baltic Sea. Hydrobiologia. 847:2485–2501. DOI:10.1007/s10750-020-04267-1.
  • Feike M, Heerkloss R, Rieling T, Schubert H. 2007. Studies on the zooplankton community of a shallow lagoon of the southern Baltic Sea: long-term trends, seasonal changes, and relations with physical and chemical parameters. Hydrobiologia. 577:95–106. DOI:10.1007/s10750-006-0420-9.
  • Forsskåhl M, Laakkonen A, Leppänen J-M, Niemi Å, Sundberg A, Tamelander G. 1982. Seasonal cycle of production and sedimentation of organic matter at the entrance to the Gulf of Finland. Netherlands Journal of Sea Research. 16:290–299. DOI:10.1016/0077-7579(82)90037-0.
  • Frenken T, Velthuis M, Domis L, Stephan S, Aben R, Kosten S, van Donk E, Van de Vaal D. 2016. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Global Change Biology. 22:299–309. DOI:10.1111/gcb.13095.
  • Gammal J, Norkko J, Pilditch C, Norkko A. 2017. Coastal hypoxia and the importance of benthic macrofauna communities for ecosystem functioning. Estuaries and Coasts. 40:457–468. DOI:10.1007/s12237-016-0152-7.
  • Griffiths JR, Kadin M, Nascimento FJA, Tamelander T, Törnroos A, Bonaglia S, Bonsdorff E, Brücherts V, et al. 2017. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology. 23:2179–2196. DOI:10.1111/gcb.13642.
  • Groetsch PMM, Simis SGH, Eleveld M, Peters SWM. 2016. Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014. Biogeosciences (online). 13:4959–4973. DOI:10.5194/bg-13-4959-2016.
  • Hansen A, Nielsen T, Levinsen H, Madsen S, Thingstad F, Hansen B. 2003. Impact of changing ice cover on pelagic productivity and foodweb structure in Disko Bay. West Greenland: a dynamic model approach. Deep-Sea Research I. 50:171–187.
  • Hansson S, Dippner JW, Larsson U. 2010. Climate effects on zooplankton biomasses in a coastal Baltic Sea area. Boreal Environmental Research. 15(3):370–374.
  • Heiskanen A-S, Haapala J, Gundersen K. 1998. Sedimentation and pelagic retention of particulate C, N and P in the coastal northern Baltic Sea. Estuarine, Coastal and Shelf Science. 46:703–712.
  • Hjerne O, Hajdu S, Larsson U, Downing AS, Winder M. 2019. Climate driven changes in timing, composition and magnitude of the Baltic sea phytoplankton spring bloom. Frontiers in Marine Science. 6:482. DOI:10.3389/fmars.2019.00482.
  • HELCOM. 2013. Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Baltic Sea Environmental Proceedings No. 137.
  • Hällfors G, Niemi Å. 1974. A Chrysochromulina (Haptophyceae) bloom under the ice in the Tvärminne Archipelago, southern coast of Finland. Memoranda Societatis pro Fauna et Flora Fennica. 50:89–104.
  • Kahru M, Elmgren R, Savchuk OP. 2016. Changing seasonality of the Baltic Sea. Biogeosciences (online). 13:1009–1018. DOI 10.5194/bg-13-1009-2016.
  • Katajisto T, Viitasalo M, Koski M. 1998. Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Marine Ecology Progress Series. 163:133–143.
  • Kivi K. 1986. Annual succession of pelagic protozoans and rotifers in the Tvärminne Storfjärden, SW coast of Finland. Ophelia Suppl. 4:101–110.
  • Klais R, Tamminen T, Kremp A, Spilling K, Byoung WA, Hajdu S, Olli K. 2013. Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: Mechanisms of climate change effects on key coastal primary producers. Limnology and Oceanography. 58(2):753–762. DOI:10.4319/lo.2013.58.2.0753.
  • Kopp D, Lefebvre S, Cachera M, Villanueva MC, Ernande B. 2015. Reorganization of a marine trophic network along an inshore-offshore gradient due to stronger pelagic-benthic coupling in coastal areas. Progress in Oceanography. 130:157–171. DOI:10.1016/j.pocean.2014.11.001.
  • Koski M, Viitasalo M, Kuosa H. 1999. Seasonal development of mesozooplankton biomass and production on the SW coast of Finland. Ophelia. 50:69–91.
  • Kuparinen J, Leppänen J-M, Sarvala J, Sundberg A, Virtanen A. 1984. Production and utilization of organic matter in a Baltic ecosystem off Tvärminne, southwest coast of Finland. Conseil International Pour L'Exploration de la Mer. Rapports et Proces-Verbaux des Reunions. 183:180–192.
  • Lehmann A, Getzlaff K, Harlaß J. 2011. Detailed assessment of climate variability of the Baltic Sea area for the period 1958–2009. Climate Research. 46(2):185–196. DOI:10.3354/cr00876.
  • Lewandowska A, Sommer U. 2010. Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology Progress Series. 405:101–111. DOI:10.3354/meps0852.
  • Lignell R. 1990. Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary productivity, and bacterial secondary productivity in the Baltic Sea. Marine Ecology Progress Series. 68: 85–99.
  • Lignell R, Heiskanen A-S, Kuosa H, Gundersen K, Kuuppo-Leinikki P, Pajuniemi R, Uitto A. 1993. Fate of phytoplankton spring bloom: sedimentation and carbon flow in the planktonic food web in the northern Baltic. Marine Ecology Progress Series. 94:239–252.
  • Maar M, Hansen JLS. 2011. Increasing temperatures change pelagic trophodynamics and the balance between pelagic and benthic secondary production in a water column model of the Kattegat. Journal of Marine Systems. 85(1–2):57–70. DOI:10.1016/j.jmarsys.2010.11.006.
  • Meier M, Eilola K, Almroth E. 2011. Climate-related changes in marine ecosystems simulated with a 3-dimensional coupled physical-biogeochemical model of the Baltic Sea. Climate Research. 48:31–55. DOI:10.3354/cr00968.
  • Meier M. 2015. Projected change–marine Physics. In: The BACC II Author Team, editor. Second assessment of climate change for the Baltic Sea basin. Springer International Publishing; p. 960–996.
  • Merkouriadi I, Leppäranta M. 2014. Long-term analysis of hydrography and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea. Climatic Change. 124:849–859. DOI:10.1007/s10584-014-1130–3.
  • Möllmann C, Kornilovs G, Sidrevics L. 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research. 22:2015–2038. DOI:10.1093/plankt/22.11.2015.
  • Nascimento FJA, Karlson AML, Naslund J, Gorokhova E. 2009. Settling cyanobacterial blooms do not improve growth conditions for soft bottom meiofauna. Journal of Experimental Marine Biology Ecology. 368:138–146. DOI:10.1016/j.jembe.2008.09.014.
  • Niemi Å, Åström A-M. 1987. Ecology of phytoplankton in the Tvärminne area, SW coast of Finland. IV. Environmental conditions, chlorophyll a and phytoplankton in winter and spring 1984 at Tvärminne Storfjärd. Annales Botanici Fennici. 24:333–352.
  • Raateoja M, Seppälä J, Kuosa H, Myrberg K. 2005. Recent changes in trophic state of the Baltic Sea along SW coast of Finland. Ambio. 34:188–191.
  • Raateoja M, Hällfors H, Kaitala S. 2018. Vernal phytoplankton bloom in the Baltic Sea: intensity and relation to nutrient regime. Journal of Sea Research. 138:24–33. DOI:10.1016/j.seares.2018.05.003.
  • Richardson A. 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science. 65:279–295. DOI:10.1093/icesjms/fsn028.
  • Rodil I, Lucena-Moya P, Tamelander T, Norkko J, Norkko A. 2020. Seasonal variability in benthic-pelagic coupling: Quantifying organic matter inputs to the seafloor and benthic macrofauna using a multi-marker approach. Frontiers in Marine Science. 7:404. DOI:10.3389/fmars.2020.00404.
  • Sommer U, Gliwicz ZM, Lampert W, Duncan A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archivfür Hydrobiologie. 106:433–471.
  • Sommer U, Lengfellner K. 2008. Climate change and the timing, magnitude and composition of the phytoplankton spring bloom. Global Climate Change. 14:1199–1208. DOI:10.1111/j.1365-2486.2008.01571.x.
  • Sommer U, Lewandowska A. 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology. 17:154–162. DOI:10.1111/j.1365-2486.2010.02182.x.
  • Sommer U, Aberle N, Lengfellner K, Lewandowska A. 2012. The Baltic Sea spring phytoplankton bloom in a changing climate: An experimental approach. Marine Biology. 159:2479–2490. DOI:10.1007/s00227-012-1897-6.
  • Spilling K. 2007. Dense sub-ice bloom of dinoflagellates in the Baltic sea, potentially limited by high pH. Journal of Plankton Research. 29:895–901. DOI:10.1093/plankt/fbm067.
  • Spilling K, Lindström M. 2008. Phytoplankton life cycle transformation lead to species-specific effects on sediment processes in the Baltic Sea. Continental Shelf Research. 28:2488–2495. DOI:10.1016/j.csr.2008.07.004.
  • Spilling K, Olli K, Lehtoranta J, Kremp A, Tedesco L, Tamelander T, Klais R, Peltonen H, Tamminen T. 2018. Shifting diatom – dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Frontiers in Marine Science. 5:327. DOI:10.3389/fmars.2018.00327.
  • Sunda WG, Cai WJ. 2012. Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric PCO2. Environmental Science and Technology. 46:10651–10659. DOI:10.1021/es300626f.
  • Tamelander T, Heiskanen A-S. 2004. Effects of spring bloom phytoplankton dynamics and hydrography on the composition of settling material in the coastal northern Baltic Sea. Journal of Marine Systems. 52(1–4):217–234. DOI:10.1016/j.jmarsys.2004.02.001.
  • Tamelander T, Aubert AB, Wexels Riser C. 2012. Export stoichiometry and contribution of copepod faecal pellets to vertical flux of particulate organic carbon, nitrogen and phosphorous. Marine Ecology Progress Series. 459:17–28. DOI:10.3354/meps09733.
  • Tamelander T, Spilling K, Winder M. 2017. Organic matter export to the seafloor in the Baltic sea: drivers of change and future projections. Ambio. 46:842–851. DOI:10.1007/s13280-017-0930-x.
  • Vanharanta M, Elovaara S, Franklin D, Spilling K, Tamelander T. 2020. Viability of pico- and nanophytoplankton in the Baltic Sea during spring. Aquatic Ecology. 54:119–135. DOI:10.1007/s10452-019-09730-3.
  • Velthuis M, Domis L, Frenken T, Stephan S, Kazanjian G, Aben R, Hilt S, Kosten S, van Donk E, Van de Vaal D. 2017. Warming advances top-down control and reduces producer biomass in a freshwater plankton community. Ecosphere (Washington, DC). 8:e01651. DOI:10.1002/ecs2.1651.
  • Viitasalo M, Vuorinen I, Saesmaa S. 1995. Mesozooplankton dynamics in the northern Baltic Sea: implications of variations in hydrography and climate. Journal of Plankton Research. 17:1857–1995. DOI:10.1093/plankt/17.10.1857.
  • Viitasalo M, Rosenberg M, Heiskanen A-S, Koski M. 1999. Sedimentation of copepod fecal material in the coastal northern Baltic Sea: where did all the pellets go? Limnology and Oceanography. 44:1388–1399.
  • Wasmund N, Nausch G, Gerth M, Busch S, Burmeister C, Hansen R, Sadkowiak E. 2019. Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change. Marine Ecology Progress Series. 622:1–6. DOI:10.3354/meps12994.
  • Wassmann P. 1998. Retention vs. export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia. 363:29–57. DOI:10.1023/A:1003113403096.
  • Wexels Riser C, Wassmann P, Olli K, Pasternak A, Arashkevich E. 2002. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea. Journal of Marine Systems. 38:175–188. DOI:10.1016/S0924-7963(02)00176-8.
  • Winder M, Sommer U. 2012. Phytoplankton response to a changing climate. Hydrobiologia. 698:5–16. DOI:10.1007/s10750-012-1149-2.
  • Winder M, Schindler D. 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology. 85:2100–2106. DOI:10.1890/04-0151.