219
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Bacterial composition and putative functions associated with sponges, sediment and seawater from the Tioman coral reef system, Peninsular Malaysia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 729-743 | Received 03 Apr 2020, Accepted 05 Feb 2021, Published online: 10 Mar 2021

References

  • Akmal KF, Shahbudin S, Faiz MHM, Hamizan YM. 2019. Diversity and abundance of Scleractinian corals in the East Coast of Peninsular Malaysia: a case study of Redang and Tioman Islands. Ocean Science Journal. 54:435–456. https://doi.org/10.1007/s12601-019-0018-6
  • Baldani JI, Videira SS, Teixeira KRS, Reis VM, Oliveira ALM, Schwab S, Souza EM, Pedraza RO, Baldani VLD, Hartmann A. 2014. 22 the family Rhodospirillaceae. In: Rosenberg E (editor-in-chief), DeLong EF, Lory S, Stackendt E, Thompson F, editors. The Prokaryotes – Alphaproteobacteria and Betaproteobacteria. 4th ed. New York, NY: Springer-Verlag; p. 533–618.
  • Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. 2018. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems. 3:e00150–18. DOI:10.1128/mSystems.00150-18.
  • Bayer K, Moitinho-Silva L, Brümmer F, Cannistraci CV, Ravasi T, Hentschel U. 2014. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiology Ecology. 90(3):832–843. DOI:10.1111/1574-6941.12441.
  • Bayer K, Schmitt S, Hentschel U. 2008. Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environmental Microbiology. 10(11):2942–2955. DOI:10.1111/j.1462-2920.2008.01582.x.
  • Borcard D, Gillet F, Legendre P. 2018. Numerical ecology with R. New York (NY): Springer International Publishing, Springer Nature. pp 435. DOI:10.1007/978-3-319-71404-2.
  • Bowen JL, Morrison HG, Hobbie JE, Sogin ML. 2012. Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates. The ISME Journal. 6:2014–2023. DOI:10.1038/ismej.2012.47.
  • Breuker A, Koweker G, Blazejak A, Schippers A. 2011. The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA. Frontiers in Microbiology. 2:156. DOI:10.3389/fmicb.2011.00156.
  • Brock TD, Madigen MT, Martinko JM, Parker J. 1984. Biology of microbiology. London: Prentice Hall, International (UK).
  • Brück WM, Brück TB, Self WT, Reed JK, Nitecki SS, McCarthy PJ. 2010. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. The ISME Journal. 4:686–699. DOI:10.1038/ismej.2009.149.
  • Campbell AG, Schwientek P, Vishnivetskaya T, Woyke T, Levy S, Beall CJ, Griffen A, Leys E, Podar M. 2014. Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota. Environmental Microbiology. 16(9):2635–2643. DOI:10.1111/1462-2920.12461.
  • Capone DG, Dunham SE, Horrigan SG, Duguay LE. 1992. Microbial nitrogen transformations in unconsolidated coral reef sediments. Marine Ecology Progress Series. 80:75–88. DOI:10.3354/meps080075.
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 7(5):335–336. DOI:10.1038/nmeth.f.303.
  • Chelliah A. 2017. Expedition report, paradise in peril: studying & protecting reefs within the Tioman Archipelago marine protected area, Malaysia. Kuala Lumpur: Reef Check Malaysia & Biosphere Expeditions.
  • Cleary DFR, Becking LE, de Voogd NJ, Pires ACC, Polónia ARM, Egas C, Gomes NCM. 2013. Habitat-and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiology Ecology. 85(3):465–482. DOI:10.1111/1574-6941.12135.
  • Cleary DFR, de Voogd NJ, Polónia ARM, Freitas R, Gomes NCM. 2015. Composition and predictive functional analysis of bacterial communities in seawater, sediment and sponges in the Spermonde Archipelago, Indonesia. Microbial Ecology. 70(4):889–903. DOI:10.1007/s00248-015-0632-5.
  • Cleary DFR, Polónia ARM, Becking LE, de Voogd NJ, Purwanto GH, Gomes NCM. 2018. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system, Indonesia. Marine Biodiversity. 48(4):1889–1901. DOI:10.1007/s12526-017-0697-0.
  • Cleary DFR, Swierts T, Coelho FJRC, Polónia ARM, Huang YM, Ferreira MRS, Putchakarn S, Carvalheiro L, van der Ent E, Ueng J-P, et al. 2019. The sponge microbiome within the greater coral reef microbial metacommunity. Nature Communications. 10:1644. DOI:10.1038/s41467-019-09537-8.
  • Coelho FJRC, Cleary DFR, Gomes NCM, Polónia ARM, Huang YM, Liu LL, de Voogd NJ. 2018. Sponge prokaryote communities in Taiwanese coral reef and shallow hydrothermal vent ecosystems. Microbial Ecology. 75(1):239–254. DOI:10.1007/s00248-017-1023-x.
  • Cohen SZ, Creege SM, Carsel RF, Enfield CG. 1984. Potential pesticide contamination of groundwater from agricultural uses. In: Krueger RF, Sieber JN, editors. Treatment and disposal of pesticide wastes, Vol. 259. Washington: American Chemical Society; p. 297–325. https://doi.org/10.1021/bk-1984-0259.ch018
  • de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, Admiraal W. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 342(6154):108–110. DOI:10.1126/science.1241981.
  • de Voogd NJ, Cleary DFR. 2009. Variation in sponge composition among Singapore reefs. Raffles Bulletin of Zoology. 22:59–67. DOI:10.1016/j.ecss.2005.06.025.
  • de Voogd NJ, Cleary DRF, Polónia ARM, Gomes NCM. 2015. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the Thousand Islands reef complex, West-Java, Indonesia. FEMS Microbiology Ecology. 91(4):fiv019. DOI:10.1093/femsec/fiv019.
  • de Voogd NJ, Gauvin-Bialecki A, Polónia ARM, Cleary DFR. 2018. Assessing the bacterial communities of sponges inhabiting the remote western Indian Ocean island of Mayotte. Marine Ecology. 39:e12517. DOI:10.1111/maec.12517.
  • Dunbar J, Barns SM, Ticknor LO, Kuske CR. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environmental Microbiology. 68(6):3035–3045. DOI:10.1128/AEM.68.6.3035-3045.2002.
  • Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods. 10(10):996–998. DOI:10.1038/nmeth.2604.
  • Edgar RC, Haas B, Clemente J, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27(16):2194–2200. DOI:10.1093/bioinformatics/btr381.
  • Erwin PM, Thacker RW. 2008. Phototrophic nutrition and symbiont diversity of two Caribbean sponge cyanobacteria symbioses. Marine Ecology Progress Series. 362:139–147. DOI:10.3354/meps07464.
  • Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T. 2012. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proceedings of the National Academy of Sciences of the United States of America. 109(27):E1878–E1887. DOI:10.1073/pnas.1203287109.
  • Frank AH, Garcia JA, Herndl GJ, Reinthaler T. 2016. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic deep water. Environmental Microbiology. 18(6):2052–2063. DOI:10.1111/1462-2920.13237.
  • Freeman CJ, Thacker RW. 2011. Complex interactions between marine sponges and their symbiotic microbial communities. Limnology and Oceanography. 56(5):1577–1586. DOI:10.4319/lo.2011.56.5.1577.
  • Garrity G, Bell JA, Lilburn T. 2005. Order V. Thiotrichales ord. nov. In: Brenner DJ, Krieg NR, Staley NR, Garrity GM, editors. Bergey’s manual of systematic bacteriology. 2nd ed. Vol. 2. The Proteobacteria, part B. The Gammaproteobacteria. New York (NY): Springer; p. 131–180.
  • Gauthier M-EA, Watson JR, Degnan SM. 2016. Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Frontiers in Marine Sciences. 3:196. DOI:10.3389/fmars.2016.00196.
  • Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Hentschel U. 2014. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. The Biological Bulletin. 227(1):78–88. DOI:10.1086/BBLv227n1p78.
  • Gomes NCM, Cleary DFR, Pinto FN, Egas C, Almeida A, Cunha A, Mendonça-Hagler LCS, Smalla K. 2010. Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS One. 5(11):e14065. DOI:10.1371/journal.pone.0014065.
  • Gomes NCM, Heuer H, Schönfeld J, Costa R, Mendonça-Hagler LCS, Smalla K. 2001. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil. 232(1–2):167–180. DOI:10.1023/A:101035040.
  • Hanada S. 2014. The phylum Chloroflexi, the family Chloroflexaceae, and the related phototrophic families Oscillochloridaceae and Roseiflexaceae. In: Rosenberg E (editor-in-chief), DeLong EF, Lory S, Stackendt E, Thompson F, editors. The Prokaryotes – other major lineages of bacteria and the Archaea. 4th ed. Berlin: Springer; p. 515–532.
  • Hardoim CCP, Esteves AIS, Pires FR, Gonçalves JMS, Cox CJ, Xavier JR, Costa R. 2012. Phylogenetically and spatially close marine sponges harbour divergent bacterial communities. PLoS One. 7(12):e53029. DOI:10.1371/journal.pone.0053029.
  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M. 2003. Microbial diversity of marine sponges. In: Müller WEG, editor. Sponges (Porifera). Progress in molecular and subcellular biology, Vol. 37. Berlin: Springer; p. 59–88.
  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology. 68(9):4431–4440. DOI:10.1128/AEM.68.9.4431-4440.2002.
  • Hentschel U, Usher KM, Taylor MW. 2006. Marine sponges as microbial fermenters. FEMS Microbiology Ecology. 55(2):167–177. DOI:10.1111/j.1574-6941.2005.00046.x.
  • Horn H, Slaby B, Jahn M, Bayer K, Moitinho-silva L, Förster F, Abdelmohsen UR, Hentschel U. 2016. An enrichment of CRISPR and other defense-related features in marine sponge associated microbial metagenomes. Frontiers in Microbiology. 7:1751. DOI:10.3389/fmicb.2016.01751.
  • Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF. 2013. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome. 1:1–22. DOI:10.1186/2049-2618-1-22.
  • Imhoff JF. 2005. Order I. Chromatiales ord. nov. In: Brenner DJ, Krieg NR, Staley NR, Garrity GM, editors. Bergey’s manual of systematic bacteriology. 2nd ed. Vol. 2. The Proteobacteria, part B. The Gammaproteobacteria. New York (NY): Springer; p. 1–3.
  • Jeong J-B, Kim K-H, Park J-S. 2015. Sponge-specific unknown bacterial groups detected in marine sponges collected from Korea through barcoded pyrosequencing. Journal of Microbiology and Biotechnology. 25(1):1–10. DOI:10.4014/jmb.1406.06041.
  • Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E. 2006. Introduction to the Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The Prokaryotes. Vol. 5. New York (NY): Springer; p. 3–37.
  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 16:111–120. DOI:10.1007/BF01731581.
  • Kindaichi T, Yuri S, Ozaki N, Ohashi A. 2012. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Science & Technology. 66(12):2556–2561. DOI:10.2166/wst.2012.479.
  • Koenig F. 2001. Eukaryotic Algae, cyanobacteria and pesticides. In: Rai LC, Gaur JP, editor. Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Berlin: Springer; p. 392–395.
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33(7):1870–1874. DOI:10.1093/molbev/msw054.
  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 31(9):814. DOI:10.1038/nbt.2676.
  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY. 2011. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. The ISME Journal. 5(4):650–664. DOI:10.1038/ismej.2010.165.
  • Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia. 129:271–280. DOI:10.1007/s004420100716.
  • Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox BG, Currie CR. 2016. Evolution and ecology of Actinobacteria and their bioenergy applications. Annual Review of Microbiology. 70(1):235–254. DOI:10.1146/annurev-micro-102215-095748.
  • Mehrshad M, Rodriguez-Valera F, Amoozegar MA, López-García P, Ghai R. 2018. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. The ISME Journal. 12:655–668. DOI:10.1038/s41396-017-0009-5.
  • Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T, Seridi L, Ravasi T, Hentschel U. 2013. Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Molecular Ecology. 23(6):1348–1363. DOI:10.1111/mec.12365.
  • Morris RM, Rappé MS, Urbach E, Connon SA, Giovannoni SJ. 2004. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Applied and Environmental Microbiology. 70(5):2836–2842. DOI:10.1128/aem.70.5.2836-2842.2004.
  • Partensky F, Blanchot J, Vaulot D. 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Charpy Loïc, Larkum AWD, editors. Marine cyanobacteria, n° spécial 19. Paris: Bulletin de l'Institut Océanographique de Monaco; p. 457–475. ISBN 2-7260-0210-2
  • Pham CD, Hartmann R, Müller WEG, de Voogd NJ, Lai D, Proksch P. 2013. Aaptamine derivatives from the Indonesian sponge Aaptos suberitoides. Journal of Natural Products. 76(1):103–106. DOI:10.1021/np300794b.
  • Pires ACC, Cleary DFR, Almeida A, Cunha Â, Dealtry S, Mendonça-Hagler LCS, Smalla K, Gomes NCM. 2012. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented Archaeal diversity in mangrove sediment and rhizosphere samples. Applied and Environmental Microbiology. 78(16):5520–5528. DOI:10.1128/AEM.00386-12.
  • Pires ACC, Cleary DFR, Polónia ARM, Lim SC, de Voogd NJ, Oliveira V, Gomes NCM. 2019. Comparison of bacterial communities associated with Xestospongia testudinaria, sediment and seawater in a Singaporean coral reef ecosystem. Journal of the Marine Biological Association of the United Kingdom. 99(2):331–342. DOI:10.1017/S0025315418000188.
  • Polónia ARM, Cleary DFR, Coelho FJRC, Becking LE, de Voogd NJ, Toha AHA, Gomes NCM. 2018. Compositional analysis of archaeal communities in high and low microbial abundance sponges in the Misool coral reef system, Indonesia. Marine Biology Research. 14(6):537–550. DOI:10.1080/17451000.2018.1498977.
  • Polónia ARM, Cleary DFR, Duarte LN, de Voogd NJ, Gomes NCM. 2014. Composition of Archaea in seawater, sediment, and sponges in the Kepulauan Seribu reef system, Indonesia. Microbial Ecology. 67(3):553–567. DOI:10.1007/s00248-013-0365-2.
  • Polónia ARM, Cleary DFR, Freitas R, Coelho FJRC, de Voogd NJ, Gomes NCM. 2016. Comparison of archaeal and bacterial communities in two sponge species and seawater from an Indonesian coral reef environment. Marine Genomics. 29:69–80. DOI:10.1016/j.margen.2016.04.014.
  • Polónia ARM, Cleary DFR, Freitas R, de Voogd NJ, Gomes NCM. 2015. The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment. Molecular Ecology. 24(2):409–423. DOI:10.1111/mec.13024.
  • Polónia ARM, Cleary DFR, Freitas R, Gomes NCM, de Voogd NJ. 2017. Archaeal and bacterial communities of Xestospongia testudinaria and sediment differ in diversity, composition and predicted function in an Indonesian coral reef environment. Journal of Sea Research. 119:37–53. DOI:10.1016/j.seares.2016.10.007.
  • Proctor LM. 1997. Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquatic Microbial Ecology. 12:105–113. DOI:10.3354/ame012105.
  • R Core Team. 2013. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org.
  • Rahman MM, Noor NM, Saad S, Yunus K. 2016. Coastal water quality of Tioman Island: effects of human activity and the distance from shoreline. Desalination and Water Treatment. 57(1):83–87. DOI:10.1080/19443994.2015.1006820.
  • Schmitt S, Deines P, Behman F, Wagner M, Taylor MW. 2011. Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiology Ecology. 78(3):497–510. DOI:10.1111/j.1574-6941.2011.01179.x.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biology. 12(6):R60. DOI:10.1186/gb-2011-12-6-r60.
  • Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, Dandekar T, Hentschel U. 2011. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. The ISME Journal. 5(1):61–70. DOI:10.1038/ismej.2010.95.
  • Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. 2017. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. The ISME Journal. 11(11):2465–2478. DOI:10.1038/ismej.2017.101.
  • Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG. 2008. Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats. International Journal of Systematic and Evolutionary Microbiology. 58(12):2890–2897. DOI:10.1099/ijs.0.2008/000166-0.
  • Suzuki R, Shimodaira H. 2015. pvclust: hierarchical clustering with P-values via multiscale bootstrap. R package version 2.0-0. https://CRAN.R-project.org/package=pvclust.
  • Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews. 71(2):295–347. DOI:10.1128/MMBR.00040-06.
  • Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, Olson JB, Erwin PM, López-Legentil S, Luter H, et al. 2016. Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications. 7:11870. DOI:10.1038/ncomms11870.
  • Urbach E, Vergin KL, Young L, Morse A. 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanograph. 46(3):557–572. DOI:10.4319/lo.2001.46.3.0557.
  • van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, de Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA. 2012. Global diversity of sponges (Porifera). PLoS One. 7(4):e35105. DOI:10.1371/journal.pone.0035105.
  • Wang Y, Qian PY. 2009. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One. 4(10):e7401. DOI:10.1371/journal.pone.0007401.
  • Ward JH. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association. 58:236–244. DOI:10.1080/01621459.1963.10500845.
  • Webster NS, Taylor MW. 2012. Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology. 14(2):335–346. DOI:10.1111/j.1462-2920.2011.02460.x.
  • Webster NS, Thomas T. 2016. The sponge hologenome. MBio. 7:e00135-16. DOI:10.1128/mBio.00135-16.
  • Weisz JB, Hentschel U, Lindquist N, Martens CS. 2007. Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Marine Biology. 152(2):475–483. DOI:10.1007/s00227-007-0708-y.
  • Wilkinson CR. 1979. Bdellovibrio-like parasite of cyanobacteria symbiotic in marine sponges. Archives of Microbiology. 123:101–103. DOI:10.1007/BF00403507.
  • Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, et al. 2014. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature. 506:58–62. DOI:10.1038/nature12959.
  • Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphateaccumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. International Journal of Systematic and Evolutionary Microbiology. 53:1155–1163. DOI:10.1099/ijs.0.02520-0.
  • Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology. 7(1–2):203–214. DOI:10.1089/10665270050081478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.