348
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of salinity on haemolymph osmolality, gill Na+/K+ ATPase and antioxidant enzyme activities in the male mud crab Scylla olivacea (Herbst, 1796)

&

References

  • Amin-Safwan A, Muhd-Farouk H, Nadirah M, Ikhwanuddin M. 2016. Effect of water salinity on the external morphology of ovarian maturation stages of orange mud crab, Scylla olivacea (Herbst, 1796) in captivity. Pakistan Journal of Biological Sciences. 19(5):219–226. doi:10.3923/pjbs.2016.219.226.
  • An MI, Choi CY. 2010. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: effects on hemolymph and biochemical parameters. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 155(1):34–42. doi:10.1016/j.cbpb.2009.09.008.
  • Baylon JC. 2011. Survival and development of larvae and juveniles of the mud crab [Scylla olivacea Forskal (Crustacea: Decapoda: Portunidae)] at various temperatures and salinities. Philippine Agricultural Scientist. 94(2):195–204. doi:10.1111/j.1749-7345.2010.00429.x.
  • Bianchini A, Lauer MM, Nery LE, Colares EP, Monserrat JM, Dos Santos Filho EA. 2008. Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 151(3):423–436. doi:10.1016/j.cbpa.2007.12.001.
  • Blaber SJ. 1997. Fish and fisheries in tropical estuaries. London: Springer Science & Business Media.
  • Brookes PS. 2005. Mitochondrial H+ leak and ROS generation: an odd couple. Free Radical Biology and Medicine. 38:12–23. doi:10.1016/j.freeradbiomed.2004.10.016.
  • Chen JC, Chia PG. 1997. Osmotic and ionic concentrations of Scylla serrata (Forska°l) subjected to different salinity levels. Comparative Biochemistry and Physiology Part A: Physiology. 117(2):239–244. doi:10.1016/S0300-9629(96)00237-X.
  • Chen J-C, Lin J-L. 1994. Responses of hemolymph osmolality and tissue water of Penaeus chinensis Osbeck juveniles subjected to sudden change in salinity. Marine Biology. 120:115–121. doi:10.1007/BF00381947.
  • Chung KF, Lin HC. 2006. Osmoregulation and Na,K-ATPase expression in osmoregulatory organs of Scylla paramamosain. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 144(1):48–57. doi:10.1016/j.cbpa.2006.02.003.
  • Compere P, Wanson S, Pequeux A, Gilles R, Goffinet G. 1989. Ultrastructural changes in the gill epithelium of the green crab Carcinus maenas in relation to the external salinity. Tissue & Cell. 21(2):299–318. doi:10.1016/0040-8166(89)90073-6.
  • Cooper AR, Morris S. 1997. Osmotic and ionic regulation by Leptograpsus variegatus during hyposaline exposure and in response to emersion. Journal of Experimental Marine Biology and Ecology. 214(1-2):263–282. doi:10.1016/S0022-0981(96)02778-5.
  • Evans DH, Cooper K, Bogan MB. 1976. Sodium extrusion by the sea-water-acclimated fiddler crab Uca pugilator: comparison with other marine crustacea and marine teleost fish. Journal of Experimental Biology. 64:203–219.
  • Freire CA, Onken H, McNamara JC. 2008. A structure-function analysis of ion transport in crustacean gills and excretory organs. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 151(3):272–304. doi:10.1016/j.cbpa.2007.05.008.
  • Freire CA, Togni VG, Hermes-Lima M. 2011a. Responses of free radical metabolism to air exposure or salinity stress, in crabs (Callinectes danae and C. ornatus) with different estuarine distributions. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 160(2):291–300. doi:10.1016/j.cbpa.2011.06.024.
  • Freire CA, Welker A, Storey JM, Storey KB, Hermes-Lima M. 2011b. Oxidative stress in estuarine and intertidal environments (temperate and tropical). In: Abele D, Zenteno-Savin T, Vázquez- Medina JP, editor. Oxidative stress in aquatic ecosystems. New York: Wiley-Blackwell; p. 41–57. doi:10.1002/9781444345988.ch3.
  • Freitas R, De Marchi L, Bastos M, Moreira A, Velez C, Chiesa S, Soares AMVM. 2017. Effects of seawater acidification and salinity alterations on metabolic, osmoregulation and oxidative stress markers in Mytilus galloprovincialis. Ecological Indicators. 79:54–62. doi:10.1016/j.ecolind.2017.04.003.
  • Garcon DP, Masui DC, Mantelatto FL, Furriel RP, McNamara JC, Leone FA. 2009. Hemolymph ionic regulation and adjustments in gill (Na+, K+)-ATPase activity during salinity acclimation in the swimming crab Callinectes ornatus (Decapoda, Brachyura). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 154(1):44–55. doi:10.1016/j.cbpa.2009.04.624.
  • Gunarto, Parenrengi A. 2014. Crablet of mangrove crab, Scylla olivacea rearing at the different salinity regimes. Journal of Aquaculture Research & Development. 5:255. doi:10.4172/2155-9546.1000255.
  • Hai R, Jian L, Jitao L, Yu Y, Hongxing G, Dongli L, Tianji Y. 2015. Cloning of catalase and expression patterns of catalase and selenium dependent glutathione peroxidase from Exopalaemon carinicauda in response to low salinity stress. Acta Oceanologica Sinica. 34(8):52–61. doi:10.1007/s13131-015-0640-9.
  • Hamasaki K, Matsui N, Nogami M. 2011. Size at sexual maturity and body size composition of mud crabs Scylla spp. caught in Don Sak, Bandon Bay, Gulf of Thailand. Fisheries Science. 77(1):49–57. doi:10.1007/s12562-010-0307-6.
  • Harris RR, Santos MCF. 1993. Sodium uptake and transport (Na+/K+) ATPase changes following Na+ depletion and low salinity acclimation in the mangrove crab Ucides cordatus (L.). Comparative Biochemistry and Physiology Part A: Physiology. 105:35–42. doi:10.1016/0300-9629(93)90170-9.
  • Havird JC, Santos SR, Henry RP. 2014. Osmoregulation in the Hawaiian anchialine shrimp Halocaridina rubra (Crustacea: Atyidae): expression of ion transporters, mitochondria-rich cell proliferation and hemolymph osmolality during salinity transfers. Journal of Experimental Biology. 217(13):2309–2320. doi:10.1242/jeb.103051.
  • Hill BJ. 1979. Biology of the crab Scylla serrata in the St. Lucia System. Transactions of the Royal Society of South Africa. 44:55–62. doi:10.1080/00359197909520079.
  • Henry RP. 1996. Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annual Review of Physiology. 58:523–538. doi:10.1146/annurev.ph.58.030196.002515.
  • Henry RP, Garrelts EE, McCarty MM, Towle DW. 2002. Differential induction of branchial carbonic anhydrase and Na(+)/K(+) ATPase activity in the euryhaline crab, Carcinus maenas, in response to low salinity exposure. Journal of Experimental Zoology. 292(7):595–603. doi:10.1002/jez.10075.
  • Henry RP, Lucu C, Onken H, Weihrauch D. 2012. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Frontiers in Physiology. 3:431. doi:10.3389/fphys.2012.00431.
  • Holliday CW. 1985. Salinity-induced changes in gill Na,K ATPase activity in the mud fiddler crab, Uca pugnax. Journal of Experimental Zoology. 233:199–208. doi:10.1002/jez.1402330206.
  • Janas U, Piłka M, Lipińska D. 2013. Temperature and salinity requirements of Palaemon adspersus Rathke, 1837 and Palaemon elegans Rathke, 1837. Do they explain the occurrence and expansion of prawns in the Baltic Sea? Marine Biology Research. 9(3):293–300. doi:10.1080/17451000.2012.739699.
  • Jantrarotai P, Taweechuer K, Pripanapong S. 2002. Salinity levels on survival rate and development of mud crab (Scylla olivacea) from zoea to megalopa and from megalopa to crab stage. Agriculture and Natural Resources. 36:278–284.
  • Keenan CP, Davie V, Mann D. 1998. A revision of the genus Scylla De Haan, 1833 (Crustacea: Decapoda: Brachyura: Portunidae). The Raffles Bulletin of Zoology. 46(1):217–245.
  • Lebata JH, Le Vay L, Primavera JH, Walton M, Biñas J. 2007. Enhancement of fisheries for mud crabs Scylla spp. in the mangroves of Naisud and Bugtong, Ibajay, Aklan, Philippines: baseline assessment of species abundance. Bulletin of Marine Science. 80:891–904.
  • Leone FA, Garcon DP, Lucena MN, Faleiros RO, Azevedo SV, Pinto MR, McNamara JC. 2015. Gill-specific (Na(+), K(+))-ATPase activity and alpha-subunit mRNA expression during low-salinity acclimation of the ornate blue crab Callinectes ornatus (Decapoda, Brachyura). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 186:59–67. doi:10.1016/j.cbpb.2015.04.010.
  • Lesser MP. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review of Physiology. 68:253–278. doi:10.1146/annurev.physiol.68.040104.110001.
  • Li E, Chen L, Zeng C, Yu N, Xiong Z, Chen X, Qin JG. 2008. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture. 274(1):80–86. doi:10.1016/j.aquaculture.2007.11.001.
  • Lignot J-H, Charmantier G. 2015. Osmoregulation and excretion. In: Chang ES, Thiel M, editors. The natural history of the crustacea. Vol. 4. New York (NY): Oxford University Press; p. 249–285.
  • Lignot J-H, Spanings-Pierrot C, Charmantier G. 2000. Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture. 191:209–245. doi:10.1016/S0044-8486(00)00429-4.
  • Lin HC, Su YC, Su SH. 2002. A comparative study of osmoregulation in four fiddler crabs (Ocypodidae: Uca). Zoological Science. 19(6):643–650. doi:10.2108/zsj.19.643.
  • Liu Y, Wang W-N, Wang A-L, Wang J-M, Sun R-Y. 2007. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture. 265(1-4):351–358. doi:10.1016/j.aquaculture.2007.02.010.
  • Livingstone DE. 2003. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue de Medecine Veterinaire. 154(6):427–430.
  • Long X, Wu X, Zhao L, Ye H, Cheng Y, Zeng C. 2017. Effects of salinity on gonadal development, osmoregulation and metabolism of adult male Chinese mitten crab, Eriocheir sinensis. PLoS One. 12(6):e0179036. doi:10.1371/journal.pone.0179036.
  • Lovett DL, Verzi MP, Burgents JE, Tanner CA, Glomski K, Lee JJ, Towle DW. 2006. Expression profiles of Na+,K+-ATPase during acute and 73 chronic hypo-osmotic stress in the blue crab Callinectes sapidus. The Biological Bulletin. 211:58–65. doi:10.2307/4134578.
  • Lu J-Y, Shu M-A, Xu B-P, Liu G-X, Ma Y-Z, Guo X-L, Liu Y. 2014. Mud crab Scylla paramamosain glutamate dehydrogenase: molecular cloning, tissue expression and response to hyposmotic stress. Fisheries Science. 81(1):175–186. doi:10.1007/s12562-014-0828-5.
  • Lu YL, Wang F, Jia XY, Gao QF, Dong SL. 2013. A laboratory simulation of the effects of acute salinity decrease on osmoregulation and Hsps expression in the swimming crab, Portunus trituberculatus: implications for aquaculture. Marine and Freshwater Behaviour and Physiology. 46(5):301–311. doi:10.1080/10236244.2013.832573.
  • Lucu C, Towle DW. 2003. Na++K+-ATPase in gills of aquatic crustacea. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 135(2):195–214. doi:10.1016/s1095-6433(03)00064-3.
  • Luquet CM, Ansaldo M. 1997. Acid-base balance and ionic regulation during emersion in the estuarine intertidal crab Chasmagnathus granulata Dana (Decapoda, Grapsidae). Comparative Biochemistry and Physiology Part A: Physiology. 117:407–410. doi:10.1016/S0300-9629(96)00282-4.
  • Luquet CM, Postel U, Halperin J, Urcola MR, Marques R, Siebers D. 2002. Transepithelial potential differences and Na+ flux in isolated perfused gills of the crab Chasmagnathus granulata (Grapsidae) acclimatedtohyper and hypo-salinity. Journal of Experimental Biology. 205:71–77.
  • Lushchak VI. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology. 101(1):13–30. doi:10.1016/j.aquatox.2010.10.006.
  • McNamara JC, Faria SC. 2012. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. Journal of Comparative Physiology B. 182(8):997–1014. doi:10.1007/s00360-012-0665-8.
  • McNamara JC, Torres AH. 1999. Ultracytochemical location of Na+/K+- ATPase activity and effects of high salinity acclimation in gill and renal epithelia of the freshwater shrimp Macrobrachium olfersii (Crustacea, Decapoda). The Journal of Experimental Zoology. 284:617–628. doi:10.1002/(SICI)1097-010X(19991101)284:6<617::AID-JEZ3>3.0.CO;2-V.
  • Moser SM, Macintosh DJ, Pripanapong S, Tongdee N. 2002. Estimated growth of the mud crab Scylla olivacea in the Ranong mangrove ecosystem, Thailand, based on a tagging and recapture study. Marine and Freshwater Research. 53:1083–1089. doi:10.1071/MF01048.
  • Onken H, Riestenpatt S. 1998. NaCl absorption across split gill lamellae of hyperregulating crabs: transport mechanisms and their regulation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 119(A):883–893. doi:10.1016/S1095-6433(98)00020-8.
  • Onken H, Tresguerres M, Luquet CM. 2003. Active NaCl absorption across posterior gills of hyperosmoregulating Chasmagnathus granulatus. Journal of Experimental Biology. 206:1017–1023. doi:10.1242/jeb.00227.
  • Overton JL, Macintosh DJ. 2002. Estimated size at sexual maturity for female mud crabs (genus Scylla) from two sympatric species within Ban Don Bay, Thailand. Journal of Crustacean Biology. 22(4):790–797. doi:10.1651/0278-0372(2002)022[0790:Esasmf]2.0.Co;2.
  • Palacios E, Bonilla A, Luna D, Racotta IS. 2004. Survival, Na+/K+-ATPase and lipid responses to salinity challenge in fed and starved white pacific shrimp (Litopenaeus vannamei) postlarvae. Aquaculture. 234:497–511. doi:10.1016/j.aquaculture.2003.12.001.
  • Paital B, Chainy GBN. 2010. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 151(1):142–151. doi:10.1016/j.cbpc.2009.09.007.
  • Paital B, Chainy GBN. 2012. Effects of salinity on O2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 155(2):228–237. doi:10.1016/j.cbpc.2011.08.009.
  • Paital B, Chainy GBN. 2013. Modulation of expression of SOD isoenzymes in mud crab (Scylla serrata): effects of inhibitors, salinity and season. Journal of Enzyme Inhibition and Medicinal Chemistry. 28(1):195–204. doi:10.3109/14756366.2011.645239.
  • Péqueux A, Gilles R, Marshall WS. 1989. NaCl transport in gills and related structures. In: Greger R, editor. Advances in comparative and environmental physiology. Berlin: Springer; p. 1–73. doi:10.1007/978-3-642-73285-0_1
  • Rahi ML, Ferdusy T, Wali Ahmed S, Khan MN, Aziz D, Salin KR. 2020. Impact of salinity changes on growth, oxygen consumption and expression pattern of selected candidate genes in the orange mud crab (Scylla olivacea). Aquaculture Research. 1–12. doi:10.1111/are.14772.
  • Regoli F, Bocchetti R, Filho DW. 2012. Spectrophotometric assays of antioxidants. In: Abele D, Zenteno-Savin T, Vázquez- Medina JP, editor. Oxidative stress in aquatic ecosystems. New York: Wiley-Blackwell; p. 367–380.
  • Riestenpatt S, Onken H, Siebers D. 1996. Active absorption of Na+ and Cl− across the gill epithelium of the shore crab Carcinus maenas: voltage-clamp and ion-flux studies. Journal of Experimental Biology. 199:1545–1554.
  • Rivera-Ingraham GA, Barri K, Boël M, Farcy E, Charles A-L, Geny B, Lignot J-H. 2016. Osmoregulation and salinity-induced oxidative stress: Is oxidative adaptation determined by gill function? Journal of Experimental Biology. 219(1):80–89. doi:10.1242/jeb.128595.
  • Rivera-Ingraham GA, Lignot JH. 2017. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: raising the questions for future research. The Journal of Experimental Biology. 220(10):1749–1760. doi:10.1242/jeb.135624.
  • Romano N, Wu X, Zeng C, Genodepa J, Elliman J. 2014. Growth, osmoregulatory responses and changes to the lipid and fatty acid composition of organs from the mud crab, Scylla serrata, over a broad salinity range. Marine Biology Research. 10(5):460–471. doi:10.1080/17451000.2013.819981.
  • Romano N, Zeng C. 2006. The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture. 260(1-4):151–162. doi:10.1016/j.aquaculture.2006.06.019.
  • Romano N, Zeng C. 2012. Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture. 334-337:12–23. doi:10.1016/j.aquaculture.2011.12.035.
  • Rosas C, Martinez E, Gaxiola G, Brito R, Sanchez A, Soto LA. 1999. The effect of dissolved oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. Journal of Experimental Marine Biology and Ecology. 234:41–57. doi:10.1016/S0022-0981(98)00139-7.
  • Shinji J, Strüssmann CA, Wilder MN, Watanabe S. 2009. Short-term responses of the adult of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda, Brachyura, Grapsoidea) in different salinities: osmoregulation, oxygen consumption and ammonia excretion. Journal of Crustacean Biology. 29(2):269–272. doi:10.1651/08-2998R.1.
  • Storey KB. 1996. Oxidative stress: animal adaptations in nature. Brazilian Journal of Medical and Biological Research. 29:1715–1733.
  • Tangkrock-Olan N, Ketpadung R. 2010. A comparative study on the blood osmolality of the mud crab (Scylla serrata) and the blue swimming crab (Portunus pelagicus) exposed to different salinities: A case study for the topic 79 “Osmotic Regulation” in high school biology. Asian Journal of Biology Education. 4:8–14.
  • Thabet R, Ayadi H, Koken M, Leignel V. 2017. Homeostatic responses of crustaceans to salinity changes. Hydrobiologia. 799(1):1–20. doi:10.1007/s10750-017-3232-1.
  • Togni VG. 2007. Efeito da salinidade sobre a resposta do sistema antioxidante e express˜ao de hsp70 em siris (ĝenero Callinectes) [Effect of salinity on the response of the antioxidant system and hsp70 expression in crabs (genus Callinectes)] [PhD thesis]. Universidade Federal do Parańa, Brazil.
  • Towle DW, Paulsen RS, Weihrauch D, Kordylewski M, Salavador C, Lignot JH, Spanings-Pierrot C. 2001. Na+/K+-ATPase in gills of the blue crab Callinectes sapidus: cDNA sequencing and salinity-related expression of a-subunit mRNA and protein. Journal of Experimental Zoology. 204:4005–4012.
  • Vay LL. 2001. Ecology and management of mud crab Scylla spp. Asian Fisheries Science. 14:101–111.
  • Walton ME, Le Vay L, Lebata JH, Binas J, Primavera JH. 2006. Seasonal abundance. distribution and recruitment of mud crabs (Scylla spp.) in replanted mangroves. Estuarine, Coastal and Shelf Science. 66:493–500. doi:10.1016/j.ecss.2005.09.015.
  • Wang D, Li F, Chi Y, Xiang J. 2012. Potential relationship among three antioxidant enzymes in eliminating hydrogen peroxide in penaeid shrimp. Cell Stress and Chaperones. 17(4):423–433. doi:10.1007/s12192-011-0317-z.
  • Wang L, Wang X, Yin S. 2016. Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata. PeerJ. 4:e2149. doi:10.7717/peerj.2149.
  • Yang Y, Ye H, Huang H, Li S, Liu X, Zeng X, Gong J. 2013. Expression of Hsp70 in the mud crab, Scylla paramamosain in response to bacterial, osmotic, and thermal stress. Cell Stress and Chaperones. 18(4):475–482. doi:10.1007/s12192-013-0402-6.
  • Ye L, Jiang S, Zhu X, Yang Q, Wen W, Wu K. 2009. Effects of salinity on growth and energy budget of juvenile Penaeus monodon. Aquaculture. 290(1-2):140–144. doi:10.1016/j.aquaculture.2009.01.028.
  • Zanders IP, Rojas WE. 1996. Osmotic and ionic regulation in the fiddler crab Uca rapax acclimated to dilute and hypersaline seawater. Marine Biology. 125(2):315–320. doi:10.1007/BF00346312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.