112
Views
0
CrossRef citations to date
0
Altmetric
Original articles

Early developmental stages of the sea urchin Sphaerechinus granularis (Lamarck, 1816) (Echinoidea: Toxopneustidae)

ORCID Icon & ORCID Icon
Pages 266-277 | Received 20 Oct 2021, Accepted 16 Jun 2022, Published online: 12 Jul 2022

References

  • Agassiz A. 1867. On the embryology of echinoderms. Memoirs of the American Academy of Arts and Sciences. 9(1):1. doi:10.2307/25057991.
  • Agatsuma Y. 2013. Strongylocentrotus intermedius. In: John M. Lawrence, editor. Developments in Aquaculture and fisheries science (Vol. 38), p. 437–447. Elsevier.
  • Amy RL. 1983. Gamete sizes and developmental time tables of five tropical sea urchins. Bulletin of Marine Science. 33(1):173–176.
  • Bader W. 2018. Sea urchin development on the example of Sphaerechinus granularis.
  • Burić P, Jakšić Ž, Štajner L, Dutour Sikirić M, Jurašin D, Cascio C, Calzolai L, Lyons DM. 2015. Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure. Marine Environmental Research. 111:50–59. doi:10.1016/j.marenvres.2015.06.015.
  • Clarke A. 1992. Reproduction in the cold: Thorson revisited. Invertebrate Reproduction and Development. 22(1–3):175–184. doi:10.1080/07924259.1992.9672270.
  • Emlet RB. 1983. Locomotion, drag, and the rigid skeleton of larval echinoderms. The Biological Bulletin. 164(3):433–445. doi:10.2307/1541253.
  • Emlet RB. 1995. Developmental Mode and species geographic range in regular Sea urchins (echinodermata: echinoidea). Evolution. 49(3):476–489. doi:10.1111/j.1558-5646.1995.tb02280.x.
  • Emlet RB, Hoegh-Guldberg O. 1997. Effects of egg size on postlarval performance: experimental evidence from a sea urchin. Evolution. 51(1):141–152. doi:10.1111/j.1558-5646.1997.tb02395.x.
  • Emlet RB, McEdward LR, Strathmann RR. 1987. Echinoderm larval ecology viewed from the egg. In: M. Jangoux, J. M. Lawrence, editor. Echinoderm studies. Vol. 2. A.A. Balkema; p. 55–136. Rotterdam.
  • Emlet RB, Young CM, George SB. 2002. Phylum echinodermata: echinoidea. In: Craig M. Young, Mary A. Sewell, Mary E. Rice, editor. Atlas of Marine Invertebrate larvae. p. 531–551. San Diego: Academic Press.
  • Ettensohn CA. 2017. Sea urchins as a Model system for studying embryonic development. In: Reference module in biomedical sciences (pp. 1–7). Elsevier.
  • Fenaux L. 1969. Les échinoplutéus de la Méditerranée. Bulletin de l’Institute Océanographique de Monaco. 68(1394):28.
  • Fenaux L. 1972. Modalités de la ponte chez l’oursin Sphaerechinus granularis (LMCK). Internationale Revue Der Gesamten Hydrobiologie. 57(4):551–558. doi:10.1002/iroh.19720570406
  • García E, Hernández JC, Clemente S. 2018. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification. Marine Environmental Research. 139(March):35–45. doi:10.1016/j.marenvres.2018.04.011.
  • George SB, Lawrence JM, Lawrence AL, Ford J. 2000. Fertilization and development of eggs of the sea urchin Lytechinus variegatus maintained on an extruded feed. Journal of the World Aquaculture Society. 31(2):232–238. doi:10.1111/j.1749-7345.2000.tb00358.x.
  • Gravina M, Pagano G, Oral R, Guida M, Toscanesi M, Siciliano A, Di Nunzio A, Burić P, Lyons DM, Thomas PJ, Trifuoggi M. 2018. Heavy rare earth elements affect Sphaerechinus granularis Sea urchin early life stages by multiple toxicity endpoints. Bulletin of Environmental Contamination and Toxicology. 100(5):641–646. doi:10.1007/s00128-018-2309-5.
  • Guillou M, Lumingas LJ. 1998. The reproductive cycle of the ‘blunt’ sea urchin. Aquaculture International. 6(2):147–160. http://www.springerlink.com/index/Q122356067617687.pdf. doi:10.1023/A:1009290307840
  • Guillou M, Lumingas LJ. 1999. Variation in the reproductive strategy of the sea urchin Sphaerechinus granularis (echinodermata: Echinoidea) related to food availability. Journal of Marine Biological Association of the United Kingdom. 79(1):131–136. doi:10.1017/S0025315498000149
  • Guillou M, Lumingas LJ, Michel C. 2000a. The effect of feeding or starvation on resource allocation to body components during the reproductive cycle of the sea urchin Sphaerechinus granularis (lamarck). Journal of Experimental Marine Biology and Ecology. 245(2):183–196. doi:10.1016/S0022-0981(99)00162-8.
  • Guillou M, Michel C. 1993. Reproduction and growth of Sphaerechinus granularis (echinodermata: Echinoidea) in Southern brittany. Journal of the Marine Biological Association of the United Kingdom. 73(01):179–192. doi:10.1017/S0025315400032719.
  • Guillou M, Michel C. 1994. The influence of environmental factors on the growth of Sphaerechinus granularis (Lamarck) (echinodermata: echinoidea). Journal of Experimental Marine Biology and Ecology. 178(1):97–111. doi:10.1016/0022-0981(94)90227-5.
  • Guillou M, Quiniou F, Huart B, Pagano G. 2000b. Comparison of embryonic development and metal contamination in several populations of the sea urchin Sphaerechinus granularis (Lamarck) exposed to anthropogenic pollution. Archives of Environmental Contamination and Toxicology. 39(3):337–344. doi:10.1007/s002440010113.
  • Harvey EB. 1933. Development of the parts of Sea urchin eggs separated by centrifugal force. The Biological Bulletin. 64(2):125–148. doi:10.2307/1537225.
  • Hernández JC, Clemente S, Tuya F, Pérez-Ruzafa Á, Sangil C, Moro-Abad L, Bacallado-Aránega JJ. 2014. Echinoderms of the Canary Islands, Spain. In: Juan José Alvarado, Francisco Alonso Solis-Marin, editor. Echinoderm research and Diversity in Latin America. p. 471–510. Heidelberg.
  • Herrera JC. 1998. Nutritional strategies in echinoplutei [Doctoral dissertation, University of Florida].
  • Herrera JC, McWeeney SK, McEdward LR. 1996. Diversity of energetic strategies among echinoid larvae and the transition from feeding to nonfeeding development. Oceanologica Acta. 19(3–4):313–321.
  • Heyland A, Hodin J. 2014. A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment. BMC Developmental Biology. 14(1):1–14. doi:10.1186/1471-213X-14-22.
  • Jordana E, Guillou M, Lumingas LJ. 1997. Age and growth of the sea urchin Sphaerechinus granularis in Southern brittany. Journal of the Marine Biological Association of the United Kingdom. 77:1199–1212. doi:10.1017/S0025315400038716.
  • José R, Ribeiro C, Neves P, Lourenço S. 2018. First assessment of the population structure and reproductive cycle of the sea urchin Sphaerechinus granularis (Lamarck 1816) in Madeira island: a potential new candidate to echinoculture. Frontiers in Marine Science. 5. doi:10.3389/conf.FMARS.2018.06.00133.
  • Kitazada C, Sakaguchi C, Nishimura H, Kobayashi C, Baba T, Yamanaka A. 2014. Development of the sea urchins Temnopleurus toreumaticus leske, 1778 and Temnopleurus reevesii gray, 1855 (camarodonta: temnopleuridae). Zoological Studies. 53(3):1–11. doi:10.1016/S0091-679X(04)74004-2.
  • Koehler, R. 1921. S. Cl. Échinides Réguliers. In Faune de France: Échinodermes (Vol. 1, pp. 107–139). Wiesbaden: Kraus Reprint.
  • Krohn A. 1853. Ueber die Larve des Echinus brevispinosus. In: Johannes Müller, editor. Archiv für Anatomie, Physiologie und Wissenschaftliche (Issue November, pp. 361–364). Berlin: Veit et comp.
  • Love AC, Strathmann RR. 2018. Marine invertebrate larvae: Model life histories for development, ecology, and evolution. In: T. J. Carrier, A. M. Reitzel, A. Heyland, editor. Evolutionary Ecology of Marine Invertebrate larvae. Oxford University Press; p. 306–321.
  • Lönning S, Wennerberg C. 1963. Biometric studies of echinoderm eggs. Sarsia. 11(1):25–27. doi:10.1080/00364827.1963.10410282.
  • Lumingas LJ, Guillou M. 1994. Growth zones and back-calculation for the sea urchin, Sphaerechinus granularis, from the Bay of Brest, France. Journal of the Marine Biological Association of the United Kingdom. 74(3):671–686. doi:10.1017/S0025315400047731.
  • Marshall DJ, Krug PJ, Kupriyanova EK, Byrne M, Emlet RB. 2011. The biogeography of Marine Invertebrate life histories. Annual Review of Ecology, Evolution, and Systematics. 43(1):97–114. doi:10.1146/annurev-ecolsys-102710-145004.
  • Marshall DJ, McAlister JS, Reitzel AM. 2018. Evolutionary ecology of parental investment and larval diversity. In: T. J. Carrier, A. M. Reitzel, A. Heyland, editor. Evolutionary Ecology of Marine Invertebrate larvae. Oxford University Press; p. 34–49.
  • McAlister JS, Moran AL. 2012. Relationships among egg size, composition, and energy: A comparative study of geminate sea urchins. PLoS One. 7(7). doi:10.1371/journal.pone.0041599.
  • McAlister JS, Moran AL. 2013. Effects of variation in egg energy and exogenous food on larval development in congeneric sea urchins. Marine Ecology Progress Series. 490:155–167. doi:10.3354/meps10420.
  • McCarthy RA, Burger MM. 1987. In vivo embryonic expression of lamini and its involvement in cell shape change in the sea urchin Sphaerechinus granularis. Development. 101(4):659–671. doi:10.1242/dev.101.4.659
  • McClay DR. 2011. Evolutionary crossroads in developmental biology: Sea urchins. Development. 138(13):2639–2648. doi:10.1242/dev.048967.
  • McEdward LR. 1986. Comparative morphometrics of echinoderm larvae. I. some relationships between egg size and initial larval form in echinoids. Journal of Experimental Marine Biology and Ecology. 96:251–265. doi:10.1016/0022-0981(86)90206-6.
  • McEdward LR, Herrera JC. 1999. Body form and skeletal morphometrics during larval development of the sea urchin Lytechinus variegatus lamarck. Journal of Experimental Marine Biology and Ecology. 232(2):151–176. doi:10.1016/S0022-0981(98)00106-3.
  • McEdward LR, Miner BG. 2001. Larval and life-cycle patterns in echinoderms. Canadian Journal of Zoology. 79(7):1125–1170. doi:10.1139/z00-218.
  • McEdward LR, Miner BG. 2006. Estimation and interpretation of egg provisioning in marine invertebrates. Integrative and Comparative Biology. 46(3):224–232. doi:10.1093/icb/icj026.
  • McEdward LR, Miner BG. 2007. Echinoid larval ecology. In: John M. Lawrence, editor. Edible Sea urchins: biology (Issue 5, pp. 71–94). papers3://publication/uuid/8E1A60AD-F11A-4CF1-9621-3D81534ED694. Elsevier.
  • McEdward LR, Morgan KH. 2001. Interspecific relationships between egg size and the level of parental investment per offspring in echinoderms. Biological Bulletin. 200(1):33–50. doi:10.2307/1543083.
  • Moran AL, McAlister JS, Whitehill AG. 2017. Eggs as energy: revisiting the scaling of Egg size and energetic content Among echinoderms. Biological Bulletin. 224(3):184–191. doi:10.1086/BBLv224n3p184
  • Morgan TH. 1895. Studies of the “partial” larvae of sphaerechinus. Development Genes and Evolution. 2(1):81–126. doi:10.1007/BF02084183.
  • Mortensen T. 1927. Handbook of the echinoderms of the British isles. Edinburgh: Oxford University Press.
  • Müller J. 1855. Über die Gattungen der Seeigellarven. Siebente Abhandlung über die Metamorphose der Echinodermen. Vorgetragen in der Königl. Akademie der Wissenschaften zu Berlin am 17. November 1853. Druckerei der Königl. Akademie der Wissenschaften,. https://www.biodiversitylibrary.org/item/43199.
  • Nesbit KT, Hamdoun A. 2020. Embryo, larval, and juvenile staging of Lytechinus pictus from fertilization through sexual maturation. Developmental Dynamics. 249(11):1334–1346. doi:10.1002/dvdy.223.
  • Nielsen C. 2018. Origin and Diversity of Marine larvae. In: T. J. Carrier, A. M. Reitzel, A. Heyland, editor. Evolutionary Ecology of Marine Invertebrate larvae. Oxford University Press; Vol. 1, p. 3–15.
  • Oulhen N, Reich A, Wong JL, Ramos I, Wessel GM. 2013. Diversity in the fertilization envelopes of echinoderms. Evolution and Development. 15(1):28–40. doi:10.1111/ede.12012.
  • Pechenik JA. 2018. Latent effects: surprising consequences of embryonic and larval experience on life after metamorphosis. In: T. J. Carrier, A. M. Reitzel, A. Heyland, editor. Evolutionary Ecology of Marine Invertebrate larvae. Oxford University Press; p. 208–225.
  • Pennington JT, Strathmann RR. 1990. Consequences of the calcite skeletons of planktonic echinoderm larvae for orientation, swimming, and shape. Biological Bulletin. 179(1):121–133. doi:10.2307/1541746.
  • Quiniou F, Guillou M, Judas A. 1999. Arrest and delay in embryonic development in sea urchin populations of the Bay of Brest (brittany, France): link with environmental factors. Marine Pollution Bulletin. 38(5):401–406. doi:10.1016/S0025-326X(98)90159-X.
  • Rasband WS. 2018. ImageJ (1.8.0). U.S. National Institutes of Health.
  • Sanhueza-Guevara S, Neira-Osses K, Rojas C, Genevière AM, Fernandez C. 2018. Effects of three pesticides used to control sea lice on the early development of choromytilus chorus, Sphaerechinus granularis, and paracentrotus lividus. Latin American Journal of Aquatic Research. 46(5):969–980. doi:10.3856/vol46-issue5-fulltext-10.
  • Sartoretto S, Francour P. 1997. Quantification of bioerosion by Sphaerechinus granularis on “coralligène” concretions of the western Mediterranean. Journal of the Marine Biological Association of the United Kingdom. 77(May):565–568. doi:10.1017/S0025315400071885
  • Sewell MA, Young CM. 1999. Temperature limits to fertilization and early development in the tropical sea urchin echinometra lucunter. Journal of Experimental Marine Biology and Ecology. 236(2):291–305. doi:10.1016/S0022-0981(98)00210-X.
  • Sinervo B, McEdward LR. 1988. Developmental Consequences of an Evolutionary change in Egg size: An Experimental test. Evolution. 42(5):885–899. doi:10.1111/j.1558-5646.1988.tb02509.x
  • Soars N, Prowse TAA, Byrne M. 2009. Overview of phenotypic plasticity in echinoid larvae, “echinopluteus transversus” type vs. typical echinoplutei. Marine Ecology Progress Series. 383:113–125. doi:10.3354/meps07848.
  • Sonnenholzner-Varas JI, Touron N, Orrala MMP. 2018. Breeding, larval development, and growth of juveniles of the edible sea urchin Tripneustes depressus: A new target species for aquaculture in Ecuador. Aquaculture. 496(July):134–145. doi:10.1016/j.aquaculture.2018.07.019.
  • Soualili DL, Guillou M, Semroud R. 1999. Age and growth of the echinoid Sphaerechinus granularis from the Algerian coast. Journal of the Marine Biological Association of the United Kingdom. 79(6):1139–1140. doi:10.1017/S0025315499001460.
  • Strathmann MF. 1987. Reproduction and Development of Marine invertebrates of the northern pacific coast. Washington: University of Washington Press.
  • Thorson G. 1950. Reproductive and larval ecology of invertebrates. Biological Reviews. 25(1):1–45. doi:10.1111/j.1469-185X.1950.tb00585.x.
  • Trifuoggi M, Pagano G, Oral R, Pavičić-Hamer D, Burić P, Kovačić I, Siciliano A, Toscanesi M, Thomas PJ, Paduano L, et al. 2019. Microplastic-induced damage in early embryonal development of sea urchin Sphaerechinus granularis. Environmental Research. 179(October). doi:10.1016/j.envres.2019.108815.
  • Unger B, Lott C. 1994. In-situ studies on the aggregation behaviour of the sea urchin Sphaerechinus granularis Lam. (Echinodermata: echinoidea). echinoderms through time: proceedings of the eighth International echinoderm conference, 913–919.
  • Vafidis D, Antoniadou C, Ioannidi V. 2020. Population density, size structure, and reproductive cycle of the comestible sea urchin Sphaerechinus granularis (echinodermata: Echinoidea) in the pagasitikos Gulf (aegean Sea). Animals. 10(9):1–12. doi:10.3390/ani10091506.
  • Verlaque M. 1981. Preliminary data on some posidonia feeders. Rapp PV Réun Commiss Internatl Explor Sci Méditerr. 27(2):201–202.
  • Wray GA. 1992. The Evolution of larval morphology during the post-paleozoic radiation of echinoids. Paleobiology. 18(3):258–287. https://www.jstor.org/stable/2400816?seq = 1. doi:10.1017/S0094837300010848
  • Wray GA. 1997. Echinoderms. In: S. F. Gilbert, A. M. Raunio, editor. Embryology: constructing the organism. p. 309–329. Sunderland (MA): Sinauer.
  • Wray GA, Raff RA. 1991. The evolution of developmental strategy in marine invertebrates. Trends in Ecology and Evolution. 6(2):45–50. doi:10.1016/0169-5347(91)90121-D.
  • Young CM, Tyler PA, Fenaux L. 1997. Potential for deep sea invasion by Mediterranean shallow water echinoids: pressure and temperature as stage-specific dispersal barriers. Marine Ecology Progress Series. 154(July 1997):197–209. doi:10.3354/meps154197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.