198
Views
0
CrossRef citations to date
0
Altmetric
Short report

First report on chemistry of a red seaweed Croisettea sp. from the coastal area of Yogyakarta, Indonesia

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 215-221 | Received 14 Feb 2022, Accepted 22 Jun 2022, Published online: 01 Aug 2022

References

  • Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P. 2013. Valuable compounds in macroalgae extracts. Food Chemistry. 138(2-3):1819–28. doi:10.1016/j.foodchem.2012.11.081.
  • Busetti A, Maggs CA, Gilmore BF. 2017. Marine macroalgae and their associated microbiomes as a source of antimicrobial chemical diversity. European Journal of Phycology. 52(4):452–465. doi:10.1080/09670262.2017.1376709.
  • Cabrita MT, Vale C, Rauter AP. 2010. Halogenated compounds from marine algae. Marine Drugs. 8(8):2301–2317. doi:10.3390/md8082301.
  • Chen CY. 2004. Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) from red alga–Bangia atropurpurea. Water Res. 38(4):1014–1018. doi:10.1016/j.watres.2003.11.029.
  • Chromý V, Vinklárková B, Šprongl L, Bittová M. 2015. The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. I. A review of Kjeldahl methods adopted by laboratory medicine. Critical Reviews in Analytical Chemistry. 45(2):106–111. doi:10.1080/10408347.2014.892820.
  • Ciancia M, Matulewicz MC, Tuvikene R. 2020. Structural diversity in galactans from red seaweeds and its influence on rheological properties. Frontiers in Plant Science. 11:559986. doi:10.3389/fpls.2020.559986
  • Connor J, Meaney S, Williams GA, Hayes M. 2020. Extraction of protein from four different seaweeds using three different physical pre-treatment strategies. Molecules. 25:2005. doi:10.3390/molecules25082005.
  • Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AMM, da Silva GJ, Pereira J. 2020. Seaweed phenolics: from extraction to applications. Marine Drugs. 18(8):384. doi:10.3390/md18080384.
  • Dawczynski C, Schubert R, Jahreis G. 2007. Amino acids, fatty acids, and dietary fiber in edible seaweed products. Food Chemistry. 103(3):891–899. doi:10.1016/j.foodchem.2006.09.041.
  • Denis C, Morançais M, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J. 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chemistry. 119(3):913–917. doi:10.1016/j.foodchem.2009.07.047.
  • Farias WR, Valente AP, Pereira MS, Mourão PA. 2000. Structure and anticoagulant activity of sulfated galactans: Isolation of a unique sulfated galactan from the red Algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. Journal of Biological Chemistry. 275(38):29299–29307. doi:10.1074/jbc.M002422200.
  • Fayaz M, Namitha K, Murthy KC, Swamy MM, Sarada R, Khanam S, Subbarao P, Ravishankar G. 2005. Chemical composition, iron bioavailability, and antioxidant activity of Kappaphycus alvarezzi (Doty). Journal of Agricultural and Food Chemistry. 53(3):792–797. doi:10.1021/jf0493627.
  • German JB. 2011. Dietary lipids from an evolutionary perspective: sources, structures, and functions. Maternal & Child Nutrition. 7(Suppl 2):2–16. doi:10.1111/j.1740-8709.2011.00300.x.
  • Gómez-Ordóñez E, Rupérez P. 2011. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food. Hydrocoll. 25(6):1514–1520. doi:10.1016/j.foofhyd.2011.02.009.
  • Guiry MD, Guiry GME. 2018. AlgaeBase. Worldwide electronic publication, National University of Ireland, Galway.
  • Huang HL, Wang BG. 2004. Antioxidant capacity and lipophilic content of seaweeds collected from the Qingdao coastline. Journal of Agricultural and Food Chemistry. 52(16):4993–4997. doi:10.1021/jf049575w.
  • Huang L, Zhu X, Zhou S, Cheng Z, Shi K, Zhang C, Shao H. 2021. Phthalic acid esters: natural sources and biological activities. Toxins. 13(7):495. doi:10.3390/toxins13070495.
  • Jian-Ping MA, Zhi-Bing GUO, Ling JIN, Ying-Dong LI. 2015. Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. Chinese Journal of Natural Medicines. 13(4):241–249. doi:10.1016/S1875-5364(15)30010-8.
  • Kasanah N, Amelia W, Mukminin A, Triyanto, Isnansetyo A. 2019. Antibacterial activity of Indonesian red algae Gracilaria edulis against bacterial fish pathogens and characterization of active fractions. Natural Product Research. 33(22):3303–3307. doi:10.1080/14786419.2018.1471079.
  • Kasanah N, Setiadi S, Triyanto T, Trialfhianty TI. 2018. Rumput Laut Indonesia: keanekaragaman rumput laut di Gunung Kidul. Yogyakarta, Indonesia: UGM Press. 108 pp.
  • Kasanah N, Ulfah M, Nugroho A, Wijnana APA, Triyanto. 2020. Rumput Laut Indonesia nusa Tenggara Timur. Yogyakarta, Indonesia: UGM Press. 94 pp.
  • Kladi M, Vagias C, Roussis V. 2004. Volatile halogenated metabolites from marine red algae. Phytochemistry Reviews. 3:337–366. doi:10.1007/s11101-004-4155-9.
  • Kumar KS, Ganesan K, Rao PS. 2015. Seasonal variation in nutritional composition of Kappaphycus alvarezii (Doty) Doty-an edible seaweed. Journal of Food Science and Technology. 52(5):2751–2760. doi:10.1007/s13197-014-1372-0.
  • Lafarga T, Acién-Fernándeza FG, Garcia-Vaquerob M. 2020. Bioactive peptides and carbohydrates from seaweed for food applications: natural occurrence, isolation, purification, and identification. Algal Research. 48:101909. doi:10.1016/j.algal.2020.101909.
  • Namikoshi M, Fujiwara T, Nishikawa T, Ukai K. 2006. Natural abundance 14C content of dibutyl phthalate (DBP) from three marine algae. Marine Drugs. 4(4):290–297. doi:10.3390/md404290.
  • Olufunke MD. 2011. Essential oils from aerial, seed and root of Nigerian Asystasia gangetica (L). Journal of Essential Oil Bearing Plants. 14:582–589. doi:10.1080/0972060X.2011.10643975.
  • Ortiz A, Sansinenea E. 2018. Di-2-ethylhexylphthalate may be a natural product, rather than a pollutant. Journal of Chemistry. 2018: 1–7. Article ID 6040814. doi:10.1155/2018/6040814.
  • Paiva L, Lima E, Patarra RF, Neto AI, Baptista J. 2014. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry. 164:128–135. doi:10.1016/j.foodchem.2014.04.119.
  • Pereira L, Gonçalves AMM, Leandro A. 2020. Diverse applications of marine macroalgae. Marine Drugs. 18(1):17. doi:10.3390/md18010017.
  • Rodrigues D, Freitas AC, Pereira L, Rocha-Santos TA, Vasconcelos MW, Roriz M, Rodríguez-Alcalá LM, Gomes AM, Duarte AC. 2015. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chemistry. 183:197–207. doi:10.1016/j.foodchem.2015.03.057.
  • Roy RN. 2020. Bioactive natural derivatives of phthalate ester. Critical Reviews in Biotechnology. 40(7):913–929. doi:10.1080/07388551.2020.1789838.
  • Saunders GW. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B: Biological Sciences. 360(1462):1879–1888. doi:10.1098/rstb.2005.1719.
  • Seedevi P, Moovendhan M, Viramani S, Shanmugam A. 2017. Bioactive potential and structural characterization of sulfated polysaccharide from seaweed (Gracilaria corticata). Carbohydrate Polymers. 155:516–524. doi:10.1016/j.carbpol.2016.09.011.
  • Shafaghat A. 2012. Omega-3 content, antimicrobial and antioxidant activities of hexanic extract from seed and leaf of Hypericum scabrum from northwestern Iran. African Journal of Microbiology Research. 6(5):904–908. doi:10.5897/AJMR11.523.
  • Shannon E, Abu-Ghannam SE. 2019. Seaweeds as nutraceuticals for health and nutrition. Phycologia. 58(5):563–577. doi:10.1080/00318884.2019.1640533.
  • Tanna B, Mishra A. 2018. Metabolites unravel nutraceutical potential of edible seaweed: An emerging source of functional food. Comprehensive Reviews in Food Science and Food Safety. 17(6):1613–1624. doi:10.1111/1541-4337.12396.
  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. 2017. Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology. 29:949–982. doi:10.1007/s10811-016-0974-5.
  • Wijnana APA, Kasanah N. 2018. Bioactivity of Red Seaweed Gracilaria arcuata against Aeromonas hydrophila and Vibrio sp. The Natural Products Journal. 8(2):147–152. doi:10.2174/1573401313666170925161408.
  • Zhang Q, Li N, Liu X, Zhao Z, Li Z, Xu Z. 2004. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydrate Research. 339(1):105–111. doi:10.1016/j.carres.2003.09.015.
  • Zhang ZM, Zhang HH, Zou YW, Yang GP. 2018. Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea. Environmental Pollution. 240:235–247. doi:10.1016/j.envpol.2018.04.056.
  • Zuccarello GC, Critchley AT, Smith J, Sieber V, Lhonneur GB, West JA. 2006. Systematics and genetic variation in commercial shape Kappaphycus and shape Eucheuma (Solieriaceae, Rhodophyta). Journal of Applied Phycology. 18:643–651. doi:10.1007/s10811-006-9066-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.