215
Views
1
CrossRef citations to date
0
Altmetric
Original articles

Inferring ecological strategies of Psenopsis spp. (Teleostei: Centrolophidae) inhabiting Indian waters from morphological features

ORCID Icon, , , , , , , & show all
Pages 292-305 | Received 15 Mar 2022, Accepted 07 Jul 2022, Published online: 16 Aug 2022

References

  • Abaad M, Tuset VM, Montero D, Lombarte A, Otero-Ferrer JL, Haroun R. 2016. Phenotypic plasticity in wild marine fishes associated with fish-cage aquaculture. Hydrobiologia. 765:343–358. doi:10.1007/s10750-015-2428-5.
  • Aguilar-Medrano R, Frederich B, Balart EF, de Luna E. 2012. Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific. Zoomorphology. 132:197–213. doi:10.1007/s00435-012-0178-8.
  • Aguirre H, Lombarte A. 1999. Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus. Journal of Fish Biology. 55:05–114. doi:10.1111/j.1095-8649.1999.tb00660.x.
  • Assis IO, da Silva VE, Souto-Vieira D, Lozano AP, Volpedo AV, Fabré NN. 2020. Ecomorphological patterns in otoliths of tropical fishes: assessing trophic groups and depth strata preference by shape. Environmental Biology of Fishes. 103:349–361. doi:10.1007/s10641-020-00961-0.
  • Collard M, O’Higgins P. 2002. Ontogeny and homoplasy in the papionin monkey face. Evolution & Development. 3:22–331. doi:10.1046/j.1525-142X.2001.01042.x.
  • Cruz A, Lombarte A. 2004. Otolith size and its relationship with colour patterns and sound production. Journal of Fish Biology. 65:1512–1525.
  • Da Silva MA, Perazzo GX, Kavalco KF, Pasa R. 2021. Shape diversity of the fish genus Astyanax Baird & Girard, 1854 (Teleostei, Characidae) in adjacent basins. Biologia. 76:213–221. doi:10.2478/s11756-020-00544-5.
  • De Busserolles F, Marshall NJ. 2017. Seeing in the deep-sea: visual adaptations in lanternfishes. Philosophical Transactions of the Royal Society B, Biological Sciences. 372:20160070. doi:10.1098/rstb.2016.0070.
  • Deepa KP, Kumar KA, Kottnis O, Nikki R, Bineesh KK, Hashim M, Saravanane N, Sudhakar M. 2019. Population variations of Opal fish, Bembrops caudimacula Steindachner, 1876 from Arabian Sea and Andaman Sea: evidence from otolith morphometry. Regional Studies in Marine Science. 25:100466. doi:10.1016/j.rsma.2018.100466.
  • D’Iglio C, Albano M, Famulari S, Savoca S, Panarello G, Paola DD, Perdichizzi A, Rinelli P, Lanteri G, Spano N, Capillo G. 2021. Intra- and interspecific variability among congeneric Pagellus otoliths. Scientific Reports. 11:16315. doi:10.1038/s41598-021-95814-w.
  • Dinno A. 2015. Nonparametric pairwise multiple comparisons in independent groups using Dunn's test. The Stata Journal. 15:292–300. doi:10.1177/1536867X1501500117.
  • Dornburg A, Sidlauskas B, Santini F, Sorenson L, Near TJ, Alfaro ME. 2011. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (Family: Balistidae). Evolution. 65:1912–1926. doi:10.1111/j.1558-5646.2011.01275.x.
  • Dryden IL, Mardia KV. 1998. Statistical shape analysis, vol. 4. Chichester: Wiley.
  • Eklöv P, Jonsson P. 2007. Pike predators induce morphological changes in young perch and roach. Journal of Fish Biology. 70:155–164. doi:10.1111/j.1095-8649.2006.01283.x.
  • Eme D, Anderson MJ, Myers EMV, Roberts CD, Liggins L. 2020. Phylogenetic measures reveal eco-evolutionary drivers of biodiversity along a depth gradient. Ecography. 43:689–702.
  • FAO. 1984. FAO species identification sheets for fishery purposes. In: Ficher W, Bianchi G, editors. Western Indian Ocean (fishing area 51), vol. 1–4. Rome: Food and Agricultural Organization of the United Nations.
  • Friedman ST, Price SA, Hoey AS, Wainwright PC. 2016. Ecomorphological convergence in planktivorous surgeonfishes. Journal of Evolutionary Biololgy. 29:965–78. doi:10.1111/jeb.12837.
  • Froese R, Pauly D. 2019. FishBase; [accessed 2019 Feb 2]. https://www.fishbase.in/.
  • Frost SR, Marcus LF, Bookstein F, Delson E. 2003. Cranial allometry, phylogeography, and systematics of large-bodied papionins (primates: cercopithecinae) inferred from geometric morphometric analysis of landmark data. The Anatomical Record. 275:1048–1072. doi:10.1002/ar.a.10112.
  • Gaemers PA, Poulsen JY. 2017. Recognition and distribution of two North Atlantic Gadiculus species, G. argenteus and G. thori (Gadidae), based on otolith morphology, larval pigmentation, molecular evidence, morphometrics and meristics. Fishes. 2:15. doi:10.3390/fishes2030015.
  • Gauldie RW, Crampton JS. 2002. An eco-morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. Journal of Fish Biology. 60:1204–1221. doi:10.1111/j.1095-8649.2002.tb01715.x.
  • George AB, Westneat MW. 2019. Functional morphology of endurance swimming performance and gait transition strategies in balistoid fishes. Journal of Experimental Biology. 222:jeb194704. doi:10.1242/jeb.194704.
  • Gerking SD. 2014. Feeding ecology of fish. USA: Elsevier.
  • Gierl C, Reichenbacher B. 2015. A new fossil genus of Gobiiformes from the Miocene characterized by a mosaic set of characters. Copeia. 103:792–805. doi:10.1643/CI-14-146.
  • Granados-Amores E, Granados-Amores J, Zavala-Leal OI, Flores-Ortega JR. 2020. Geometric morphometrics in the sulcus acusticus of the sagittae otolith as tool to discriminate species of the genus Centropomus (Centropomidae: Perciformes) from the southeastern Gulf of California. Marine Biodiversity. 50. doi:10.1007/s12526-019-01030-1.
  • Gupta D, Dwivedi AK, Tripathi M. 2018. Taxonomic validation of five fish species of subfamily Barbinae from the Ganga river system of northern India using traditional and truss analyses. PLoS One. 13:e0206031. doi:10.1371/journal.pone.0206031.
  • Haedrich RL. 1967a. A new species of Psenopsis (Stromateoidei, Centrolophidae) from Indo-Malayan waters. Japanese Journal of Ichthyology. 14:187–196.
  • Haedrich RL. 1967b. The stromateoid fishes: systematics and a classification. Bulletin of the Museum of Comparative Zoology. 135:31–139.
  • Haedrich RL. 1986. Suborder stromateoidei. In: Smith MM, Heemstra PC, editors. Smiths’ sea fishes. Grahamstown: J.L.B. Smith Institute of Ichthyology; p. 580–594.
  • Hammer O, Harper DAT, Ryan PD. 2001. PAST: paleontological statistic software package for education and data analysis. Palaeontologia electronica. 4:9. https://palaeo-electronica.org/2001_1/past/past.pdf.
  • Hari MS, Kathrivelpandian A, Bhavan SK, Sajina AM, Gangan SS, Abidi JF. 2019. Deciphering the stock structure of Chanos chanos (Forsskål, 1775) in Indian waters by truss network and otolith shape analysis. Turkish Journal of Fisheries and Aquatic Sciences. 20:103–111. doi:10.4194/1303-2712-v20_2_03.
  • Hebert PD, Gregory TR. 2005. The promise of DNA barcoding for taxonomy. Systematic Biology. 54:852–859. doi:10.1080/10635150500354886.
  • Helland P, Vøllestad LA, Freyhof J, Mehner T. 2009. Morphological differences between two ecologically similar sympatric fishes. Journal of Fish Biology. 75:2756–2767. doi:10.1111/j.1095-8649.2009.02476.x.
  • Jaramillo AM, Tombari AD, Dura VB, Santamalia RME, Volpedo AV. 2014. Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas. Revista de Ciencias del Marina. 30:57–66.
  • Jørgensen HBH, Pertoldi C, Hansen MM, Ruzzante DE, Loeschcke V. 2008. Genetic and environmental correlates of morphological variation in a marine fish: the case of Baltic Sea Herring (Clupea harengus). Canadian Journal of Fisheries and Aquatic Sciences. 65:389–400. doi:10.1139/f07-177.
  • Kelley JL, Evans JP. 2018. Phenotypic assortment by body shape in wild-caught fish shoals. The Science of Nature. 105:53. doi:10.1007/s00114-018-1581-x.
  • Klingenberg CP. 2011. MORPHOJ: an integrated software package for geometric Morphometrics. Molecular Ecology Resources. 11:353–357. doi:10.1111/j.1755-0998.2010.02924.x.
  • Klingenberg CP. 2016. Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution. 226:113–137. doi:10.1007/s00427-016-0539-2.
  • Kumar KVA, Deepa KP, Hashim M, Vasu C, Sudhakar M. 2017a. Relationships between fish size and otolith size of four bathy-demersal fish species from the south eastern Arabian Sea, India. Journal of Applied Ichthyology. 33:102–107. doi:10.1111/jai.13250.
  • Kumar KVA, Nikki R, Oxona K, Hashim M, Sudhakar M. 2017b. Relationships between fish and otolith size of nine deep-sea fishes from the Andaman and Nicobar waters, North Indian Ocean. Journal of Applied Ichthyology. 33:1187–1195. doi:10.1111/jai.13467.
  • Kumar KVA, Tuset VM, Hashim M, Sumod KS, Sudhakar M, Otero-Ferrer JL, Lombarte A. 2017c. Functional approach reveals low niche overlap among common deep-sea fishes from the south-eastern Arabian Sea. Deep Sea Research I. 119:16–23. doi:10.1016/j.dsr.2016.11.011.
  • Layman CA, Langerhans RB, Winemiller KO. 2005. Body size, not other morphological traits, characterizes cascading effects in fish assemblage composition following commercial netting. Canadian Journal of Fisheries and Aquatic Sciences. 62:2802–2810. doi:10.1139/f05-183.
  • Lenth RV. 2016. Least-squares means: the R package lsmeans. Journal of Statistical Software. 69:1–33. doi:10.18637/jss.v069.i01.
  • Linde M, Palmer M, Gómez-Zurita J. 2004. Differential correlates of diet and phylogeny on the shape of the premaxilla and anterior tooth in sparid fishes (Perciformes: Sparidae). Journal of Evolutionary Biology. 17:941–952. doi:10.1111/j.1420-9101.2004.00763.x.
  • Lleonart J, Salat J, Torres GJ. 2000. Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology. 205:85–93. doi:10.1006/jtbi.2000.2043.
  • Lombarte A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Environmental Biology of Fishes. 33:405–410. doi:10.1007/BF00010955.
  • Lombarte A, Cruz A. 2007. Otolith size trends in marine fish communities from different depth strata. Journal of Fish Biology. 71:53–76. doi:10.1111/j.1095-8649.2007.01465.x.
  • Lombarte A, Fortuño JM. 1992. Differences in morphological features of the sacculus of the inner ear of two hakes (Merluccius capensis and M. paradoxus, gadiformes) inhabits from different depth of sea. Journal of Morphology. 214:97–107. doi:10.1002/jmor.1052140107.
  • Lombarte A, Palmer M, Matallanas J, Gómez-Zurita J, Morales-Nin B. 2010. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes. 89:607–618.
  • Lychakov DV, Rebane YT. 2000. Otolith regularities. Hearing Research. 143:83–102. doi:10.1016/s0378-5955(00)00026-5.
  • Maderbacher M, Bauer C, Herler J, Postl L, Makasa L, Sturmbauer C. 2008. Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. Journal of Zoological Systematics and Evolutionary Research. 46:153–161. doi:10.1111/j.1439-0469.2007.00447.x.
  • Magnhagen C, Heibo E. 2001. Gape size allometry in pike reflects variation between lakes in prey availability and relative body depth. Functional Ecology. 15:754–762. https://www.jstor.org/stable/826725.
  • Marcus LF. 1993. Some aspects of multivariate statistics for morphometrics. In: Marcus LF, Bello E, Garcia-Valdecasas A, editors. Contributions to morphometrics. Madrid: Monografiasdel Museo Nacional de Ciencias Naturales 8; p. 95–130.
  • Meloro C, Raina P, Piras P, Barbera C, O’Higgins P. 2008. The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zoological Journal of Linnean Society B. 154:832–845. doi:10.1111/j.1096-3642.2008.00429.x.
  • Mille T, Mahe K, Cachera M, Villanueva MC, de Pontual H, Ernande B. 2016. Diet is correlated with otolith shape in marine fish. Marine Ecology Progress Series. 555:167–184. doi:10.3354/meps11784.
  • Mindel BL, Neat FC, Trueman CN, Webb TJ, Blanchard JL. 2016. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea. PeerJ. 4:e2387.
  • Montana CG, Winemiller KO. 2013. Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis. Biological Journal of the Linnean Society B. 109:146–164. doi:10.1111/bij.12021.
  • Montanini S, Stagioni M, Valdrè G, Tommasini S, Vallisneri M. 2015. Intra-specific and inter-specific variability of the sulcus acusticus of sagittal otoliths in two gurnard species (Scorpaeniformes, Triglidae). Fisheries Research. 161:93–101. doi:10.1016/j.fishres.2014.07.003.
  • Montgomery J, Pankhurst NW. 1997. Sensory physiology. In: Randall DJ, Farrell AP, editors. Deep-Sea fishes. San Diego and London: Academic Press; p. 325–349.
  • Nama S, Bhushan S, Ramteke KK, Jaiswar AK, Srihari M. 2022. Stock structure analysis of Yellow striped goatfish Upeneus vittatus (Forsskal, 1775) based on truss morphometric analysis along the Indian coast. Iranian Journal of Fisheries Science. 21:93–103. doi:10.22092/ijfs.2022.125851.
  • Nelson JS, Grande TC, Wilson MVH. 2006. Fishes of the world. New Jersey: John Wiley and Sons. 707 pp.
  • Neves FM, Monteiro LR. 2003. Body shape and size divergence among populations of Poecilia vivipara in coastal lagoons of south-eastern Brazil. Journal of Fish Biology. 63:928–941. doi:10.1046/j.1095-8649.2003.00199.x.
  • Ohlberger J, Staaks G, Holker F. 2007. Effects of temperature, swimming speed and body mass on standard and active metabolic rate in vendace (Coregonus albula). Journal of Comparative Physiology B. 177:905–916. doi:10.1007/s00360-007-0189-9.
  • Olivier D, Parmentier E, Frédérich B. 2016. Insight into biting diversity to capture benthic prey in damselfishes (Pomacentridae). Zoologischer Anzeiger. 264:47–55. doi:10.1016/j.jcz.2016.07.006.
  • Parin NV, Piontrovskiy AS. 2004. Stromateoid fishes (Suborder Stromateoidei) of the Indian Ocean (species composition, distribution, Biology and fisheries). Journal of Ichthyology. 44:33–62.
  • Parisi-Baradad V, Lombarte A, García-Ladona E, Cabestany J, Piera J, Chic O. 2005. Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Marine and Freshwater Research. 56:795–804. doi:10.1071/MF04162.
  • Pettersson LB, Hedenström A. 2000. Energetics, cost reduction and functional consequences of fish dimorphism. Proceedings of the Royal Society B. 267:759–764. doi:10.1098/rspb.2000.1068.
  • Popper AN, Ramcharitar J, Campana SE. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research. 56:497–504. doi:10.1071/MF04267.
  • R Development Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.Rproject.org/.
  • Rajeeshkumar MP, Kumar KVA, Otero-Ferrer JL, Lombarte A, Hashim M, Saravanane N, Sanjeevan VN, Murthy MVR, Tuset VM. 2020. Differentiating morpho-functional patterns of the five most common deep-sea benthic anglerfishes (Lophiiformes) from Andaman and Nicobar Islands (eastern Indian Ocean). Scientia Marina. 84:369–384. doi:10.3989/scimar.05081.20A.
  • Rohlf FJ. 2002. Tps small, version 1.19. Stony Brook, NY: State University of New York.
  • Rohlf FJ. 2004. TPS Dig 2.26 and TPS relative Wards Software. State University of NewYork at Stony Brook.
  • Rohlf FJ, Marcus LF. 1993. A revolution in morphometrics. Trends in Ecology and Evolution. 8:29–132. doi:10.1016/0169-5347(93)90024-J.
  • Rohlf FJ, Slice D. 1990. Extension of the procrustes method for the optimal superposition of landmarks. Systematic Zoology. 39:40–59. doi:10.2307/2992207.
  • Rowiński PK, Mateos-Gonzalez F, Sandblom E, Jutfelt F, Ekström A, Sundström LF. 2015. Warming alters the body shape of European perch Perca fluviatilis. Journal of Fish Biology. 87:1234–1247. doi:10.1111/jfb.12785.
  • Sadighzadeh S, Tuset VM, Valinassab T, Dadpour MR, Lombarte A. 2012. Comparison of different otolith shape descriptors and morphometrics in the identification of closely related species of Lutjanus spp. From the Persian Gulf. Marine Biology Research. 8:802–814. doi:10.1080/17451000.2012.692163.
  • Sadighzadeh Z, Otero-Ferrer JL, Lombarte A, Fatemi MR, Tuset VM. 2014a. An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology. Scientia Marina. 78:353–362. doi:10.3989/scimar.03982.16C.
  • Sadighzadeh Z, Valinassab T, Vosugi G, Motallebi AA, Fatemi MR, Lombarte A, Tuset VM. 2014b. Use of otolith shape for stock identification of John's snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fisheries Research. 155:59–63. doi:10.1016/j.fishres.2014.02.024.
  • Sánchez-González JR, Nicieza AG. 2017. Phenotypic convergence of artificially reared and wild trout is mediated by shape plasticity. Ecology & Evolution. 7:5922–5929. doi:10.1002/ece3.3156.
  • Singleton M. 2002. Patterns of cranial shape variation in the Papionini (Primates: Cercopithecinae). Journal of Human Evolution. 42:547–578. doi:10.1006/jhev.2001.0539.
  • Smith MM, Heemstra PC. 1986. Smith’s sea fishes. Johannesburg: Macmillan. 1047 p.
  • Sreekanth GB, Chakraborty SK, Jaiswa AK. 2016. Stock structure analysis of Japanese threadfin bream, Nemipterus japonicus (Bloch, 1791) along the Indian coast based on truss network analysis. Indian Journal of Geo-Marine Sciences. 46:1836–1841. http://nopr.niscair.res.in/handle/123456789/42601.
  • Stransky C, MacLellan SE. 2005. Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences. 62:2265–2276. doi:10.1139/f05-143.
  • Strauss RE, Bond CE. 1990. Taxonomic methods: morphology: methods for fish biology. Bethesda, Maryland: American Fisheries Society.
  • Thomas S, Rohit P. 2006. A new record of the stromateoid fish Psenopsis intermedia (Piontrovskiy, 1987) from Indian waters. Indian Journal of Fisheries. 53:127–130.
  • Tuset VM, Lombarte A, Assis CA. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina. 72:7–198. doi:10.3989/scimar.2008.72s17.
  • Tuset VM, Piretti S, Lombarte A, González JA. 2010. Using sagittal otoliths and eye diameter for ecological characterization of deepsea fish: Aphanopus carbo and A. intermedius from NE Atlantic waters. Scientia Marina. 74:807–814. doi:10.3989/scimar.2010.74n4807.
  • Tuset VM, Imondi R, Aguado G, Otero-Ferrer JL, Santschi L, Lombarte A, Love M. 2015. Otolith patterns of rockfishes from the Northeastern Pacific. Journal of Morphology. 276:458–469. doi:10.1002/jmor.20353.
  • Tuset VM, Otero-Ferrer JL, Gómez-Zurita J, Venerus LA, Stransky C, Imondi R, Orlov AM, Ye Z, Santschi L, Afanasiev PK, et al. 2016a. Otolith shape lends support to the sensory drive hypothesis in rockfishes. Journal of Evolutionary Biology. 29:2083–2097. doi:10.1111/jeb.12932.
  • Tuset VM, Farré M, Otero-Ferrer JL, Vilar A, Morales-Nin B, Lombarte A. 2016b. Testing otolith morphology for measuring marine fish biodiversity. Mar Freshwater Res. 67:1037–1048. doi:10.1071/MF15052.
  • Tuset VM, Olivar MP, Otero-Ferrer JL, López-Pérez C, Hulley PA, Lombarte A. 2018. Morpho-functional diversity in Diaphus spp. (Pisces: Myctophidae) from the central Atlantic Ocean: ecological and evolutionary implications. Deep Sea Research I. 138:46–59. doi:10.1016/j.dsr.2018.07.005.
  • Tuset VM, Jurado-Ruzafa A, Otero-Ferrer JL, Santamaría MTG. 2019. Otolith phenotypic variability of the blue jack mackerel, Trachurus picturatus, from the Canary Islands (NE Atlantic): implications in its population dynamic. Fisheries Research. 218:48–58. doi:10.1016/j.fishres.2019.04.016.
  • Taylor MD, Fowler AM, Suthers IM. 2020. Insights into fish auditory structure–function relationships from morphological and behavioural ontogeny in a maturing sciaenid. Marine Biology. 167:1–11. doi:10.1007/s00227-019-3619-9.
  • Valentin AE, Penin X, Chanut JP, Sevigny JM, Rohlf FJ. 2008. Arching effect on fish body shape in geometric morphometric studies. Journal of Fish Biology. 73:623–638. doi:10.1111/j.1095-8649.2008.01961.x.
  • Venu S, Kurup BM. 2002a. Distribution and abundance of deep-sea fishes along the west coast of India. Fishery Technology. 39:20–26.
  • Volpedo A, Echeverrı́a DD. 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fisheries Research. 60:551–560. doi:10.1016/S0165-7836(02)00170-4.
  • Volpedo AV, Tombari AD, Echeverría DD. 2008. Eco-morphological patterns of the sagitta of Antarctic fish. Polar Biology. 31:635–640. Doi:10.1007/s00300-007-0400-1.
  • Wainwright PC. 2007. Functional versus morphological diversity in macroevolution. Annual Review of Ecology, Evolution and Systematics. 38:381–401. doi:10.1146/annurev.ecolsys.38.091206.095706.
  • Warrant E. 2000. The eyes of deep-sea fishes and the changing nature of visual scenes with depth. Philosophical Transactions of the Royal Society B. 355:1155–1159. doi:10.1098/rstb.2000.0658.
  • Webb PW. 1984. Body form, locomotion and foraging in aquatic vertebrates. American Zoologyst. 24:107–120. doi:10.1093/icb/24.1.107.
  • Willis SC, Winemiller KO, Lopez-Fernandez H. 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia. 142:284–295. doi:10.1007/s00442-004-1723-z.
  • Yedier S. 2021. Otolith shape analysis and relationships between total length and otolith dimensions of European barracuda, Sphyraena sphyraena in the Mediterranean Sea. Iranian Journal of Fisheries Sciences. 20:1080–1096. http://jifro.ir/article-1-4620-en.html.
  • Yedier S, Bostanci D. 2021. Intra-and interspecific discrimination of Scorpaena species from the Aegean, Black, Mediterranean and Marmara seas. Scientia Marina. 85:197–209. doi:10.3989/scimar.05185.018.
  • Yedier S, Bostanci D. 2022. Molecular and otolith shape analyses of Scorpaena spp. in the Turkish seas. Turkish Journal of Zoology. 46:78–92.
  • Zhuang L, Ye Z, Zhang C. 2015. Application of otolith shape analysis to species separation in Sebastesspp. from the Bohai Sea and the Yellow Sea, northwest Pacific. Environmental Biology of Fishes. 98:547–558. doi:10.1007/s10641-014-0286-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.