125
Views
1
CrossRef citations to date
0
Altmetric
Report

On some cryptic sponges associated with Lessonia trabeculata holdfasts in the South-eastern Pacific

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 326-334 | Received 11 May 2022, Accepted 06 Sep 2022, Published online: 13 Oct 2022

References

  • Abdullah MI, Fredriksen S. 2004. Production, respiration and exudation of dissolved organic matter by the kelp Laminaria trabeculata along the west coast of Norway. Journal of the Marine Biological Association of the United Kingdom. 84:887–894. doi: 10.1017/S002531540401015Xh.
  • Aller-Rojas O, Moreno B, Aponte H, Zavala J. 2020. Carbon storage estimation of Lessonia trabeculata kelp beds in Southern Peru: an analysis from the San Juan de Marcona region. Carbon Management. 11:525–532. doi: 10.1080/17583004.2020.1808765.
  • Arakaki N, Gil-Kodaka P, Carbajal P, Gamarra A, Ramírez ME. 2018. I- Rhodophyta. En Macroalgas de la Costa Central del Perú (126 p). Lima, Perú: UNALM.
  • Ávila E, Blancas-Gallangos NI, Riosmena-Rodríguez R, Paul-Chávez L. 2010. Sponges associated with Sargassum spp. (Phaeophyceae: Fucales) from the south-western Gulf of California. Journal of the Marine Biological Association of the United Kingdom. 90:193–202. doi: 10.1017/S0025315409990580.
  • Azevedo F, Hajdu E, Willenz P, Klautau M. 2009. New records of Calcareous sponges (Porifera, Calcarea) from the Chilean coast. Zootaxa. 2072:1–30. doi: 10.5281/zenodo.187091.
  • Azevedo F, Cóndor-Luján B, Willenz P, Hajdu E, Hooker Y, Klautau M. 2015. Integrative taxonomy of calcareous sponges (subclass calcinea) from the Peruvian coast: morphology, molecules, and biogeography. Zoological Journal of the Linnean Society. 173:787–817. doi:10.1111/zoj.12213.
  • Bell JJ, Barnes DKA. 2000. The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: inclined cliff surfaces. Diversity and Distributions. 6:305–323. doi:10.1046/J.1472-4642.2000.00092.X.
  • Bispo A, Willenz P, Hajdu E. 2022. Diving into the unknown: fourteen new species of haplosclerid sponges (Demospongiae: Haplosclerida) revealed along the Peruvian coast (Southeastern Pacific). Zootaxa. 5087:201–252. doi: 10.11646/zootaxa.5087.2.1.
  • Blight AJ, Thompson RC. 2008. Epibiont species richness varies between holdfasts of a northern and a southerly distributed kelp species. Journal of the Marine Biological Association of the United Kingdom. 88:469–475. doi:10.1017/S0025315408000994.
  • Boury-Esnault N, Rutzler K. 1997. Washington, DC: Smithsonian Institution Press.
  • Carbajal P, Gamarra A, Moore PJ, Pérez-Matus A. 2022. Different kelp species support unique macroinvertebrate assemblages, suggesting the potential community-wide impacts of kelp harvesting along the Humboldt current system. Aquatic Conservation: Marine and Freshwater Ecosystems. 32(1):14–27. doi:10.1002/aqc.3745.
  • Cárdenas C, Davy S, Bell J. 2012. Correlations between algal abundance, environmental variables and sponge distribution patterns on southern hemisphere temperate rocky reefs. Aquatic Biology. 16:229–239. doi:10.3354/ab00449.
  • Cárdenas CA, Davy SK, Bell JJ. 2015. Influence of canopy-forming algae on temperate sponge assemblages. Journal of the Marine Biological Association of the United Kingdom. 96:351–362. doi:10.1017/S0025315414002057.
  • Cárdenas CA, Newcombe EM, Hajdu E, Gonzalez-Aravena M, Geange SW, Bell JJ. 2016. Sponge richness on algae-dominated rocky reefs in the western antarctic peninsula and the magellan strait. Polar Research. 35:1–6. doi:10.3402/polar.v35.30532.
  • Christie H, Jørgensen NM, Norderhaug KM, Waage-Nielsen E. 2003. Species distribution and habitat exploitation of fauna associated with kelp (Laminaria Hyperborea) along the Norwegian Coast. Journal of the Marine Biological Association of the United Kingdom. 83:687–699. doi: 10.1017/S0025315403007653h.
  • de Voogd NJ, Alvarez B, Boury-Esnault N, Carballo JL, Cárdenas P, Díaz M-C, Dohrmann M, Downey R, Hajdu E, Hooper JNA, Kelly M, Klautau M, Manconi R, Morrow CC, Pisera AB, Ríos P, Rützler K, Schönberg C, Vacelet J, van Soest RWM. 2022. World Porifera Database. https://www.marinespecies.org/porifera on 2022-07-28. doi:10.14284/359.
  • Fernández E, Córdova C, Tarazona J. 1999. Condiciones de la pradera submareal de Lessonia trabeculata en la isla Independencia durante “El Niño 1997–98”. Revista Peruana de Biología. 6:47–59. doi: 10.15381/rpb.v6i3.8430.
  • Flukes EB, Johnson CR, Wright JT. 2014. Thinning of kelp canopy modifies understory assemblages: the importance of canopy density. Marine Ecology Progress Series. 514:57–70. doi: 10.3354/meps10964.
  • Gerasimova E, Erpenbeck D, Plotkin A. 2008. Vosmaeria Fristedt, 1885 (Porifera, Demospongiae, Halichondriidae): revision of species, phylogenetic reconstruction and evidence for split. Zootaxa. 1694:1–37. doi:10.11646/zootaxa.1694.1.1
  • González J, Tapia C, Wilson A, Garrido J, Ávila M. 2002. Estrategia de explotación sustentable de algas pardas en la zona norte de Chile. Informe Final Proyecto Fondo de Investigación Pesquera N° 2000-19. IFOP, 232 pp.
  • Hooper JNA, Van Soest RWM. 2002. Systema porifera. A guide to the classification of sponges. In: J. N. A. Hooper, R. W. M. Van Soest, P. Willenz, editor. Systema porifera. Boston, MA: Springer US; p. 1–7.
  • Klautau M, Valentine C. 2003. Revision of the genus Clathrina (Porifera, Calcarea). Zoological Journal of the Linnean Society. 139:1–62. doi: 10.1046/j.0024-4082.2003.00063.x.
  • Klautau M, Azevedo F, Condor-Lujan B, Rapp HT, Collins A, de Moraes CA. 2013. A molecular phylogeny for the order clathrinida rekindles and refines Haeckel’s taxonomic proposal for calcareous sponges. Integrative and Comparative Biology. 53:447–461. doi:10.1093/icb/ict039.
  • Klautau M, Lopes MV, Guarabyra B, Folcher E, Ekins M, Debitus C. 2020. Calcareous sponges from the French Polynesia (Porifera: Calcarea). Zootaxa. 4748(2):261–295. doi: 10.11646/zootaxa.4748.2.3.
  • Moreno B, Cevallos B, Gómez Sánchez R, Torrejón-Zegarra R, Aller-Rojas O. 2021. A detailed underwater and on-board workflow for marine ecological research, using a subtidal kelp forest study. South Sustainability. 2(2):1–7. doi:10.21142/SS-0202-2021-m001.
  • Morrow C, Cárdenas P. 2015. Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zoology. 12(7):1–27. doi: 10.1186/s12983-015-0099-8.
  • Mothes de Moraes B. 1985. Esponjas Marinhas. Manual de Técnicas para Preparação de Coleções Zoológicas. São Paulo (SP): Sociedade Brasileira de Zoologia; p. 2.0-2.3.
  • Newcombe EM, Cárdenas C. 2011. Rocky reef benthic assemblages in the Magellan Strait and the South Shetland Islands (Antarctica). Revista de Biología Marina y Oceanografía. 46(2):177–188. doi:10.4067/S0718-19572011000200007
  • Pessarrodona A, Moore PJ, Sayer MDJ, Smale DA. 2018. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Global Change Biology. 24:4386–4398. doi: 10.1111/gcb.14303.
  • Romero L, Paredes C, Chavez R. 1988. Estructura de la macrofauna asociada a los rizoides de Lessonia sp. (Laminariales, Phaeophyta). In: Salzwedel H, Landa A, editors. COLACMAR 1987. Memorias del 2do Congreso Latinoamericano sobre Ciencias del Mar (COLACMAR); Aug 17–21; Lima, Perú. p. 133–139.
  • Rützler K. 1978. Sponges in coral reefs. In: Stoddart DR, Johannes RE, editors. Coral reefs: research methods. Norwich: UNESCO; p. 299–313.
  • Santos IR, Burdige DJ, Jennerjahn TC, Bouillon S, Cabral A, Serrano O, Wernberg T, Filbee-Dexter K, Guimond JA, Tamborski JJ. 2021. The renaissance of Odum’s outwelling hypothesis in ‘Blue carbon’ science. Estuarine, Coastal and Shelf Science. 255:1–11. doi:10.1016/j.ecss.2021.107361.
  • Shelamoff V, Layton C, Tatsumi M, Cameron MJ, Edgar GJ, Wright JT, Johnson CR. 2020. Kelp patch size and density influence secondary productivity and diversity of epifauna. Oikos. 129(3):331–345. doi:10.1111/oik.06585.
  • Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ. 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and Evolution. 3:4016–4038. doi:10.1002/ece3.774.
  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, et al. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience. 57:573–583. doi:10.1641/B570707.
  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ. 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation. 29:436–459. doi:10.1017/S0376892902000322.
  • Stone AR. 1970. Seasonal variations of spicule size in Hymeniacidon perleve. Journal of the Marine Biological Association of the United Kingdom. 50: 343–348. doi: 10.1017/S0025315400004562.
  • Subagio IB, Setiawan E, Hariyanto S, Irawan B. 2017. Spicule size variation in Xestospongia testudinaria Lamarck, 1815 at Probolinggo-Situbondo coastal. AIP Conference Proceedings. 1854:020034. doi:10.1063/1.4985425
  • Taylor PD, Wilson MA. 2002. A new terminology for marine organisms inhabiting hard substrates. PALAIOS. 17:522–525. doi:10.1669/0883-1351(2002)017<0522:ANTFMO>2.0.CO;2.
  • Teagle H, Moore PJ, Jenkins H, Smale DA. 2018. Spatial variability in the diversity and structure of faunal assemblages associated with kelp holdfasts (Laminaria hyperborea) in the northeast Atlantic. PLoS One. 13:e0200411. doi:10.1371/journal.pone.0200411
  • Tejada A, Baldarrago D, Villanueva J, Gamarra A. 2019. Assessment of Lessonia trabeculata Villouta & Santelices, 1986 in the Ilo Province, Moquegua Region, October 2015. Informe Instituto del Mar del Peru. 46(1):52–59.
  • Thiele J. 1905. Die Kiesel- und Hornschwämme der Sammlung Plate. Zoologische Jahrbücher Supplement. 6(Fauna Chiliensis III):407–496.
  • Vásquez JA. 2016. The Brown Seaweeds Fishery in Chile. In: H. Mikkola, editor. Fisheries and Aquaculture in the Modern World. London: IntechOpen; 123–141. doi:10.5772/62876.
  • Vásquez JA, Santelices B. 1984. Comunidades de macroinvertebrados en discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Revista Chilena de Historia Natural. 57:131–154.
  • Vega JMA. 2016. Fauna asociada a discos de adhesión del complejo Lessonia nigrescens. ¿Es un indicador de integridad ecológica en praderas explotadas de huiro negro, en el norte de Chile? Latin American Journal of Aquatic Research. 44:623–637. doi:10.3856/vol44-issue3-fulltext-21
  • Villouta E, Santelices B. 1986. Lessonia trabeculata sp. nov (Laminariales, Phaeophyta), a new kelp from Chile. Phycologia. 25:81–86. doi: 10.2216/i0031-8884-25-1-81.1.
  • Walls A, Kennedy R, Fitzgerald R, Blight A, Johnson M, Edwards M. 2016. Potential novel habitat created by holdfasts from cultivated Laminaria digitata: assessing the macroinvertebrate assemblages. Aquaculture Environment Interactions. 8:157–169. doi: 10.3354/aei00170.
  • Włodarska-Kowalczuk M, Kukliński P, Ronowicz M, Legeżyńska J, Gromisz S. 2009. Assessing species richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, Svalbard). Polar Biology. 32(6):897–905. doi: 10.1007/s00300-009-0590-9.
  • Zavala J, Flores D, Donayre S, Zevallos J, Huamani S. 2015. Population assessment of Lessonia trabeculata Villouta and Santelices, 1986 in San Juan de Marcona, March 2010. Informe Instituto del Mar del Perú. 42(4):510–515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.