184
Views
2
CrossRef citations to date
0
Altmetric
Original articles

Growth and biochemical profiling of marine microalgae Chlorella salina with response to nitrogen starvation

ORCID Icon &
Pages 307-314 | Received 15 Jul 2021, Accepted 23 Sep 2022, Published online: 27 Oct 2022

References

  • Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. 2013. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresource Technology. 131:188–194. doi:10.1016/j.biortech.2012.12.143
  • Babu GA, Wu X, Kabra AN, Kim DP. 2017. Cultivation of an indigenous Chlorella sorokiniana with phytohotmones for biomass and lipid production under N-limitation. Algal Research. 23:178–185. doi:10.1016/j.algal.2017.02.004
  • Becker W. 2004. Microalgae in human and animal nutrition. In: Richmond A, editor. Handbook of microalgal culture. New York: Applied Phycology and Biotechnology; p. 312–351.
  • Benvenuti G, Bosma R, Cuaresma M, Janssen M, Barbosa MJ, Wijffels RH. 2015. Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. Journal of Applied Phycology. 27:1425–1431. doi:10.1007/s10811-014-0470-8
  • Brown MR. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology. 145(1):79–99. doi:10.1016/0022-0981(91)90007-J
  • Collin AM, Jones HD, Han D, Hu Q, Beechem TE, Timlin JA. 2011. Carotenoid distribution in living cells of haematococcuspluvialis (chlorophyceae). PLoS One. 6(9):1–7. doi:10.1371/journal.pone.0024302
  • Day JG, Slocombe SP, Stanley MS. 2012. Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresource Technology. 109:245–251. doi:10.1016/j.biortech.2011.05.033
  • de la Rocha SRF, Muniz JS, Juaristi MG, Marín MTL. 2009. Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. Journal of Food Composition and Analysis. 22:330–336. doi:10.1016/j.jfca.2008.10.021
  • Del Campo JA, Garcia-Gonzalez M, Guerrero MG. 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology. 74:1163–1174. doi:10.1007/s00253-007-0844-9
  • Devi GK, Thirumaran G, Manivannan K, Anantharaman P. 2009. Element composition of certain seaweeds from Gulf of Mannar marine biosphere reserve; Southeast coast of India. World Journal of Dairy Food Science. 4:46–55.
  • Dillschneider R, Steinweg C, Rosello-Sastre R, Posten C. 2013. Biofuels from microalgae: photoconversion efficiency during lipid accumulation. Bioresource Technology. 142:647–654. doi:10.1016/j.biortech.2013.05.088.
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28:350–356. doi:10.1021/ac60111a017
  • Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture. 166(1-2):105–116. doi:10.1016/S0044-8486(98)00278-6
  • Folch J, Lees M, Stanley GS. 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry. 226(1):497–509. doi:10.1016/S0021-9258(18)64849-5
  • Geider RJ, MacIntyre HL, Kana TM. 1997. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series. 148:187–200. doi:10.3354/meps148187.
  • Griffiths MJ, van Hille RP, Harrison ST. 2014. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Applied Microbiology and Biotechnology. 98:2345–2356. doi:10.1007/s00253-013-5442-4.
  • Grima EM, Belarbi EH, Fernández FGA, Medina AR, Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances. 20:491–515. doi:10.1016/S0734-9750(02)00050-2
  • Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR. 2014. Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels. 7:1–12. doi:10.1186/1754-6834-7-84.
  • Guihéneuf F, Stengel DB. 2015. Towards the biorefinery concept: interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Research. 10:152–163. doi:10.1016/j.algal.2015.04.025
  • Heraud P, Wood BR, Beardall J, McNaughton D. 2006. Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. Journal of Chemometrics. 20(5):193–197. doi:10.1002/cem.990
  • Ho SH, Chen CY, Chang JS. 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology. 113:244–252. doi:10.1016/j.biortech.2011.11.133
  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS. 2013. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E, Bioresour. Technol. 135:157–165.
  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal. 54(4):621–639. doi:10.1111/j.1365-313X.2008.03492.x
  • Jiang Y, Yoshida T, Quigg A. 2012. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiology and Biochemistry. 54:70–77. doi:10.1016/j.plaphy.2012.02.012
  • Kilham S, Kerrger D, Goulden C, Lynn S. 1997. Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biology. 38(3):591–596. doi:10.1046/j.1365-2427.1997.00231.x
  • Kliphuis AM, Klok AJ, Martens DE, Lamers PP, Janssen M, Wijffels RH. 2012. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. Journal of Applied Phycology. 24:253–266. doi:10.1007/s10811-011-9674-3.
  • Li Z, Wakao S, Fischer BB, Niyogi KK. 2009. Sensing and responding to excess light. Annual Review of Plant Biology. 60:239–260. doi:10.1146/annurev.arplant.58.032806.103844
  • Lin Y-H, Chang F-L, Tsao C-Y, Leu J-Y. 2007. Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor. Biochemical Engineering Journal. 37(2):166–176. doi:10.1016/j.bej.2007.04.014
  • Marín MTL, Alfonso MSP, Juaristi MG, Muniz FJS, de la Rocha SR. 2010. Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. Journal of Food Composition and Analysis. 23:814–820. doi:10.1016/j.jfca.2010.03.015
  • Moreno-Garcia L, Adjallé K, Barnabé S, Raghavan GSV. 2017. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renewable and Sustainable Energy Reviews. 76:493–506. doi:10.1016/j.rser.2017.03.024
  • Pancha I, Ghosh A, Mishra S. 2017. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresource Technology. 244:1376–1383. doi:10.1016/j.biortech.2017.05.003
  • Panis G, Carreon JR. 2016. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Research. 18:175–190. doi:10.1016/j.algal.2016.06.007
  • Piorreck M, Baasch KH, Pohl P. 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry. 23:207–216. DOI: 10.1016/S0031-9422(00)80304-0.
  • Rajendran N, Karpanai Selvan B, SobanaPiriya P, Logeswari V, Kathiresan E, Tamilselvi A, John Vennison S. 2014. Phytochemicals, antimicrobial and antioxidant screening from five different marine microalgae. Journal of Chemical and Pharmaceutical Sciences. 7(2):78–85.
  • Shah M, Mahfuzur R, Liang Y, Cheng JJ, Daroch M. 2016. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in Plant Science. 7:1–28.
  • Shams El Din NG, El-Sherif. ZM. 2012. Nutritional value of some algae from the north-western Mediterranean Coast of Egypt. Journal of Applied Phycology. 24:613–626. doi:10.1007/s10811-012-9831-3
  • Solovchenko AE. 2013. Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russian Journal of Plant Physiology. 60(1):1–13. doi:10.1134/S1021443713010081
  • Śmieszek A, Giezek E, Chrapiec M, Murat M, Mucha A, Michalak I, Marycz K. 2017. The influence of Spirulina platensis filtrates on Caco-2 proliferative activity and expression of apoptosis-related microRNAs and mRNA. Marine Drugs. 15(3):1–18. doi:10.3390/md15030065
  • Tao L, Linglin W, Aifen L, Chengwu Z. 2013. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations. Chinese Journal of Oceanology and Limnology. 31:1306–1314. doi:10.1007/s00343-013-2316-7
  • Tompkins J, DeVille MM, Day JG, Turner MF. 1995. Culture collection of algae and protozoa catalogue of strains. 6th ed. Ambleside: Culture Collection of Algae and Protozoa; p. 208.
  • Wang HT, Yao CH, Ai JN, Cao XP, Xue S, Wang WL. 2014. Identification of carbohydrates as the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta) and optimization of its productivity by nitrogen manipulation. Bioresource Technology. 171:298–304. doi:10.1016/j.biortech.2014.08.090
  • Wang J, Yang H, Wang F. 2014. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Applied Biochemistry and Biotechnology. 172:3307–3329. doi:10.1007/s12010-014-0729-1
  • Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology. 144(3):307–313. doi:10.1016/S0176-1617(11)81192-2
  • Zhang L, Liu J. 2016. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation. Bioresource Technology. 211:783–786. doi:10.1016/j.biortech.2016.03.164

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.