201
Views
0
CrossRef citations to date
0
Altmetric
Original articles

Effects of elevated pCO2 on the response of coccolithophore Emiliania huxleyi to prolonged darkness

, , , , , , , & show all
Pages 509-519 | Received 20 Apr 2022, Accepted 10 Jan 2023, Published online: 09 Feb 2023

References

  • Aranguren-Gassis M, Kremer CT, Klausmeier CA, Litchman E. 2019. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecology Letters. 22:1860–1869. doi:10.1111/ele.13378
  • Arthur MA, Dean WE, Laarkamp K. 1998. Organic carbon accumulation and preservation in surface sediments on the Peru margin. Chemical Geology. 152:273–286. doi:10.1016/S0009-2541(98)00120-X
  • Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, Riebesell U. 2013. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist. 199:121–134. doi:10.1111/nph.12225
  • Balch W, Drapeau D, Bowler B, Booth E. 2007. Prediction of pelagic calcification rates using satellite measurements. Deep Sea Research Part II: Topical Studies in Oceanography. 54:478–495. doi:10.1016/j.dsr2.2006.12.006
  • Barton S, Jenkins J, Buckling A, Schaum C-E, Smirnoff N, Raven JA, Yvon-Durocher G. 2020. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecology Letters. 23:722–733. doi:10.1111/ele.13469
  • Cornwall CE, Comeau S, DeCarlo TM, Larcombe E, Moore B, Giltrow K, Puerzer F, D’Alexis Q, McCulloch MT. 2020. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nature Climate Change. 10:143–146. doi:10.1038/s41558-019-0681-8
  • Dehning I, Tilzer MM. 1989. Survival of Scenedesmus acuminatus (Chlorophyceae) in darkness. Journal of Phycology. 25:509–515. doi:10.1111/j.1529-8817.1989.tb00256.x
  • Engel A, Szlosek J, Abramson L, Liu Z, Lee C. 2009. Investigating the effect of ballasting by CaCO3 in Emiliania huxleyi: I. Formation, settling velocities and physical properties of aggregates. Deep Sea Research Part II: Topical Studies in Oceanography. 56:1396–1407. doi:10.1016/j.dsr2.2008.11.027
  • Fischer G, Karakas G. 2009. Sinking rates of particles in biogenic silica- and carbonate-dominated production systems of the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean. Biogeosciences (online). 6:85–102. doi:10.5194/bg-6-85-2009
  • Gao K, Beardall J, Häder D-P, Hall-Spencer JM, Gao G, Hutchins DA. 2019. Effects of ocean acidification on marine photosynthetic organisms under the Concurrent Influences of Warming, UV Radiation, and Deoxygenation. Frontiers in Marine Science. 6:322. doi:10.3389/fmars.2019.00322
  • Gao K, Wu Y, Li G, Wu H, E, VEV, Helbling EW. 2007. Solar UV Radiation Drives CO2 Fixation in Marine Phytoplankton: A Double-Edged Sword. Plant Physiology. 144:54–59. doi:10.1104/pp.107.098491
  • Gao K, Zhang Y, Häder D-P. 2018. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. Journal of Applied Phycology. 30:743–759. doi:10.1007/s10811-017-1329-6
  • Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, et al. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 349:aac4722. doi:10.1126/science.aac4722
  • Godrijan J, Drapeau DT, Balch WM. 2021. Osmotrophy of dissolved organic carbon by coccolithophores in darkness. New Phytologist. 233:781–794. doi:10.1111/nph.17819
  • Hutchins DA, Fu F. 2017. Microorganisms and ocean global change. Nature Microbiology. 2. doi:10.1038/nmicrobiol.2017.58
  • Iversen MH, Ploug H. 2010. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences (online). 7:2613–2624. doi:10.5194/bg-7-2613-2010
  • Katayama T, Murata A, Taguchi S. 2011. Responses of pigment composition of the marine diatom Thalassiosira weissflogii to silicate availability during dark survival and recovery. Plankton and Benthos Research. 6:1–11. doi:10.3800/pbr.6.1
  • Kharbush JJ, Close HG, Mooy BASV, Arnosti C, Smittenberg RH, Moigne FACL, Mollenhauer G, Scholz-Böttcher B, Obreht I, Koch BP, et al. 2020. Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean. Frontiers in Marine Science. 7:518. doi:10.3389/fmars.2020.00518
  • Kottmeier DM, Rokitta SD, Rost BO. 2016. H+ -deiven increase in CO2 uptake and decrease in HCO3- uptake explain coccolithophores’ acclimation responses to ocean acidification. Limnology and Oceanography. 61:2045–2057. doi:10.1002/lno.10352
  • Kremer P. 1977. Respiration and excretion by the ctenophore Mnepiopsis leidyi. Marine Biology. 44:43–50. doi:10.1007/BF00386903
  • Lewis E, Wallace D, Allison LJ. 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of Energy Tennessee.
  • Li H, Xu T, Ma J, Li F, Xu J. 2021. Physiological responses of Skeletonema costatum to the interactions of seawater acidification and combination of photoperiod and temperature. Biogeosciences (online). 18:1439–1449. doi:10.5194/bg-18-1439-2021
  • Liu Y-W, Sutton JN, Ries JB, Eagle RA. 2020. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Science Advances. 6:eaax1314. doi:10.1126/sciadv.aax1314
  • Marañón E, Lorenzo MP, Cermeño P, Mouriño-Carballido B. 2018. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. The ISME Journal. 12:1836–1845. doi:10.1038/s41396-018-0105-1
  • Martiny AC, Vrugt JA, Primeau FW, Lomas MW. 2013. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Global Biogeochemical cycles. 27:723–731. doi:10.1002/gbc.20061
  • Meyer J, Riebesell U. 2015. Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences (online). 12:1671–1682. doi:10.5194/bg-12-1671-2015
  • Monteiro FM, Bach LT, Brownlee C, Bown P, Rickaby REM, Poulton AJ, Tyrrell T, Beaufort L, Dutkiewicz S, Gibbs S, et al. 2016. Why marine phytoplankton calcify. Science Advances. 2:e1501822. doi:10.1126/sciadv.1501822
  • Popels LC, MacIntyre HL, Warner ME, Zhang Y, Hutchins DA. 2007. Physiological responses during dark survival and recovery in Aureococcus anophagefferens (Pelagophyceae). Journal of Phycology. 43:32–42. doi:10.1111/j.1529-8817.2006.00303.x
  • Post AF, Dubinsky Z, Wyman K, Falkowski PG. 1985. Physiological responses of a marine planktonic diatom to transitions in growth irradiance. Marine Ecology Progress Series. 25:141–149. doi:10.3354/meps025141
  • Qu L, Beardall J, Jiang X, Gao K. 2021. Elevated pCO2 enhances under light but reduces in darkness the growth rate of a 1 diatom, with implications for the fate of phytoplankton below the photic zone. Limnology and Oceanography. 66:3630–3642. doi:10.1002/lno.11903
  • Reinfelder JR. 2011. Carbon Concentrating Mechanisms in Eukaryotic Marine Phytoplankton. Annual Review of Marine Science. 3:291–315. doi:10.1146/annurev-marine-120709-142720
  • Riebesell U, Zondervan I, Rost BR, Tortell PD, Zeebe RE, Morel FOMM. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature. 407:364–367. doi:10.1038/35030078
  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, et al. 2004. The Oceanic Sink for Anthropogenic CO2. Science. 305:367–371. doi:10.1126/science.1097403
  • Schlüter L, Lohbeck KT, Gröger JP, Riebesell U, Reusch TBH. 2016. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Science Advances. 2:e1501660. doi:10.1126/sciadv.1501660
  • Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. 2014. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nature Climate Change. 4:1024–1030. doi:10.1038/nclimate2379
  • Suffrian K, Schulz KG, Gutowska MA, Riebesell U, Bleich M. 2011. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytologist. 190:595–608. doi:10.1111/j.1469-8137.2010.03633.x
  • Sunda WG, Price NM, Morel FM. 2005. Trace metal ion buffers and their use in culture studies. Algal Culturing Techniques. 4:35–63.
  • Tamelander T, Aubert AB, Riser CW. 2012. Export stoichiometry and contribution of copepod faecal pellets to vertical flux of particulate organic carbon, nitrogen and phosphorus. Marine Ecology Process Series. 459:17–28. doi:10.3354/meps09733
  • Taylor AR, Brownlee C, Wheeler G. 2017. Coccolithophore Cell Biology: Chalking Up Progress. Annual Review of Marine Science. 9:283–310. doi:10.1146/annurev-marine-122414-034032
  • Tong S, Gao K, Hutchins DA. 2018. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2. Global Change Biology. 24:3055–3064. doi:10.1111/gcb.14065
  • Wakeham SG, Lee C. 1993. Production, Transport, and Alteration of Particulate Organic Matter in the Marine Water Column. Topics in Geobiology. 11:145–169. doi:10.1007/978-1-4615-2890-6_6
  • Wu Y, Gao K, Riebesel U. 2010. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences (online). 7:2915–2923. doi:10.5194/bg-7-2915-2010
  • Xu D, Schaum C-E, Li B, Chen Y, Tong S, Fu F-X, Hutchins DA, Zhang X, Fan X, Han W, et al. 2021. Acclimation and adaptation to elevated pCO2 increase arsenic resilience in marine diatoms. The ISME Journal. 15:1599–1613. doi:10.1038/s41396-020-00873-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.