224
Views
0
CrossRef citations to date
0
Altmetric
Original articles

Symbiodiniaceae in and ex hospite have differential physiological responses under different heat stress scenarios

ORCID Icon, , &
Pages 108-120 | Received 10 Dec 2021, Accepted 27 Mar 2023, Published online: 28 Apr 2023

References

  • Ainsworth TD, Heron SF, Ortiz JC, Mumby PJ, Grech A, Ogawa D, Eakin CM, Leggat W. 2016. Climate change disables coral bleaching protection on the Great Barrier Reef. Science. 352:338–342. doi:10.1126/science.aac7125.
  • Al-jbour SM, Zimmer M, Kunzmann A. 2017. Cellular respiration, oxygen consumption, and trade-offs of the jellyfish cassiopea sp. in response to temperature change. Journal of Sea Research. 128:92–97. doi:10.1016/j.seares.2017.08.006.
  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S. 2009. Coral bleaching: the role of the host. Trends in Ecology & Evolution. 24:16–20. doi:10.1016/j.tree.2008.09.005.
  • Baker AC. 2001. Reef corals bleach to survive change. Nature. 411:765–766. doi:10.1038/35081151.
  • Berkelmans R, van Oppen MJH. 2006. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proceedings of the Royal Society B: Biological Sciences. 273:2305–2312. doi:10.1098/rspb.2006.3567.
  • Bhagooli R, Hidaka M. 2004. Release of zooxanthellae with intact photosynthetic activity by the coral Galaxea fascicularis in response to high temperature stress. Marine Biology. 145(2):329–337. doi:10.1007/s00227-004-1309-7.
  • Borneman E. 2008. Introduction to the husbandry of corals in aquariums: a review. In: leewis RJ, Janse M, editors. Public aquarium husbandry series 2: advances in coral husbandry in public aquariums. Arnhem, The Netherlands: Burgers’ Zoo; pp. 3–14.
  • Brockmann D, Janse M. 2008. Calcium and carbonate in closed marine aquarium systems. In: Leewis RJ, Janse M, editors. Public aquarium husbandry series 2: advances in coral husbandry in public aquariums. Arnhem, The Netherlands: Burgers’ Zoo; pp. 133–142.
  • Buddemeier RW, Fautin DG. 1993. Coral bleaching as an adaptive mechanism. BioScience. 43:320–326. doi:10.2307/1312064
  • Burriesci MS, Raab TK, Pringle JR. 2012. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. Journal of Experimental Biology. 215:3467–3477. doi:10.1242/jeb.070946.
  • Carton JA, Giese BS, Grodsky SA. 2005. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. Journal of Geophysical Research Oceans. 110:C09006. doi:10.1029/2004JC002817.
  • Chavanich S, Viyakarn V, Loyjiw T, Pattaratamrong P, Chankong A. 2009. Mass bleaching of soft coral, Sarcophyton spp. in Thailand and the role of temperature and salinity stress. ICES Journal of Marine Science. 66:1515–1519. doi:10.1093/icesjms/fsp048.
  • Cunning R, Silverstein RN, Baker AC. 2015. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proceedings of the Royal Society B: Biological Sciences. 282:20141725. doi:10.1098/rspb.2014.1725
  • D’Croz L, Maté JL. 2004. Experimental responses to elevated water temperature in genotypes of the reef coral Pocillopora damicornis from upwelling and non-upwelling environments in Panama. Coral Reefs. 23:473–483. doi:10.1007/s00338-004-0397-7.
  • Díaz-Almeyda EM, Prada C, Ohdera AH, Moran H, Civitello DJ, Iglesias-Prieto R, Carlo TA, LaJeunesse TC, Medina M. 2017. Intraspecific and interspecific variation in thermotolerance and photoacclimation inSymbiodiniumdinoflagellates. Proceedings of the Royal Society B: Biological Sciences. 284(1868):20171767. doi:10.1098/rspb.2017.1767
  • Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC. 2004. Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death & Differentiation. 11:1213–1222. doi:10.1038/sj.cdd.4401484.
  • Fabricius K. 1999. Tissue loss and mortality in soft corals following mass-bleaching. Coral Reefs. 18:54–54. doi:10.1007/s003380050153.
  • Fautin DG, Buddemeier RW. 2004. Adaptive bleaching: a general phenomenon. Hydrobiologia. 459-467(1):459–467. doi:10.1007/s10750-004-2642-z
  • Fitt WK, Trench RK. 1983. The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate symbiodinium Microadria ticum Freudenthal in culture. New Phytologist. 94:421–432. doi:10.1111/j.1469-8137.1983.tb03456.x
  • Fujise L, Nitschke MR, Frommlet JC, Serôdio J, Woodcock S, Ralph PJ, Suggett DJ. 2018. Cell cycle dynamics of cultured coral endosymbiotic microalgae (symbiodinium) across different types (species) under alternate light and temperature conditions. Journal of Eukaryotic Microbiology. 65(4):505–517. doi:10.1111/jeu.12497.
  • Gates RD, Baghdasarian G, Muscatine L. 1992. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. The Biological Bulletin. 182(3):324–332. doi:10.2307/1542252
  • Genevier LG, Jamil T, Raitsos DE, Krokos G, Hoteit I. 2019. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Global Change Biology. 25:2338–2351. doi:10.1111/gcb.14652.14652.
  • Gondon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SDH, Sutherland KR, Robinson KL, Dawson MN, Decker MB, et al. 2012. Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience. 62:160–169. doi:10.1525/bio.2012.62.2.9.
  • Graham NA, Jennings S, MacNeil MA, Mouillot D, Wilson SK. 2015. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature. 518:94–97. doi:10.1038/nature14140
  • Graham WM, Pages F, Hammer WM. 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia. 451:199–212. doi:10.1023/A:1011876004427.
  • Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith ML, Chanley MH, editors. Culture of marine invertebrates animals. New York: Plenum Press; p. 29–60. doi:10.1007/978-1-4615-8714-9_3.
  • Hoegh-Guldberg O, Jones RJ. 1999. Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Marine Ecology Progress Series. 183:73–86. doi:10.3354/meps183073.
  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science. 318:1737–1742. doi:10.1126/science.1152509.
  • Hoegh-Guldberg O, Smith GJ. 1989. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. Journal of Experimental Marine Biology and Ecology. 129:279–303. doi:10.1016/0022-0981(89)90109-3
  • Hume B, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J. 2015. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Scientific Reports. 5:8562. doi:10.1038/srep08562
  • Hume B, D’Angelo CD, Burt J, Baker AC, Riegl B, Wiedenmann J. 2013. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 symbiodinium, host fluorescence and ex situ temperature tolerance. Marine Pollution Bulletin. 72:313–322. doi:10.1016/j.marpolbul.2012.11.032
  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK. 1992. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proceedings of the National Academy of Sciences. 89(21):10302–5. doi:10.1073/pnas.89.21.10302.
  • Jokiel PL, Coles SL. 1990. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs. 8:155–162. doi:10.1007/BF00265006.
  • Jones AM, Berkelmans R, Van Oppen MJH, Mieog JC, Sinclair W. 2008. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences. 275:1359–1365. doi:10.1098/rspb.2008.0069
  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U. 1998. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell and Environment. 21:1219–1230. doi:10.1046/j.1365-3040.1998.00345.x.
  • Karim W, Nakaema S, Hidaka M. 2015. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. Journal of Marine Science and Engineering. 3(2):368–381. doi:10.3390/jmse3020368.
  • Kayanne H, Harii S, Ide Y, Akimoto F. 2002. Recovery of coral populations after the 1998 bleaching on Shiraho Reef, in the southern Ryukyus, NW Pacific. Marine Ecology Progress Series. 239:93–103. doi:10.3354/meps239093
  • Knowlton N, Brainard RE, Fisher R, Moews M, Plaisance L, Caley MJ. 2010. Coral reef biodiversity. In: McIntyre AD, editor. Life in the world’s oceans: diversity distribution and abundance. Oxford: Wiley-Blackwell; pp. 65–74.
  • Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher P, Davy S. 2014. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. Journal of Phycology. 50:1035–1047. doi:10.1111/jpy.12232.
  • LaJeunesse TC. 2002. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Marine Biology. 141(2):387–400. doi:10.1007/s00227-002-0829-2.
  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR. 2018. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology. 28:2570–2580.e6. doi:10.1016/j.cub.2018.07.008.
  • LaJeunesse TC, Smith RT, Finney J, Oxenford H. 2009. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proceedings of the Royal Society B: Biological Sciences. 276:4139–4148. doi:10.1098/rspb.2009.1405
  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, Van Woesik R. 2001. Coral bleaching: the winners and the losers. Ecology Letters. 4:122–131. doi:10.1046/j.1461-0248.2001.00203.x.
  • Magalon H, Flot JF, Baudry E. 2007. Molecular identification of symbiotic dinoflagellates in pacific corals in the genus Pocillopora. Coral Reefs. 26:551–558. doi:10.1007/s00338-007-0215-0.
  • Morais J, Medeiros APM, Santos AS. 2018. Research gaps of coral ecology in a changing world. Marine Environmental Research. 140:243–250. doi:10.1016/j.marenvres.2018.06.021
  • Mostafavi PG, Ashrafi MG, Dehghani H. 2013. Are symbiotic algae in corals in northern parts of the Persian Gulf resistant to thermal stress? Aquatic Ecosystem Health & Management. 16(2):177–182. doi:10.1080/14634988.2013.790281
  • Nitschke MR, Davy SK, Cribb TH, Ward S. 2015. The effect of elevated temperature and substrate on free-living symbiodinium cultures. Coral Reefs. 34:161–171. doi:10.1007/s00338-014-1220-8.
  • Pasaribu B, Lin IP, Tzen JTC, Jauh GY, Fan TY, Ju YM, Cheng JO, Chen CS, Jiang PL. 2014. Sldp: a novel protein related to caleosin is associated with the endosymbiotic symbiodinium lipid droplets from euphyllia glabrescens. Marine Biotechnology. 16:560–571. doi:10.1007/s10126-014-9574-z.
  • Ralph PJ, Gademann R, Larkum AW. 2001. Zooxanthellae expelled from bleached corals at 33°C are photosynthetically competent. Marine Ecology Progress Series. 220:163–168. doi:10.3354/meps220163.
  • Ravelo SF, Conaco C. 2018. Comparison of the response of in hospite and ex hospite symbiodinium to elevated temperature. Marine and Freshwater Behaviour and Physiology. 51:93–108. doi:10.1080/10236244.2018.1503935.
  • Robison JD, Warner ME. 2006. Differential impacts of Photoacclimation and thermal stress on the photobiology of four different phylotypes of symbiodinium (Pyrrhophyta)1. Journal of Phycology. 42:568–579. doi:10.1111/j.1529-8817.2006.00232.x
  • Rogers J, Davis R. 2006. Application of a new micro-culturing technique to assess the effects of temperature and salinity on specific growth rates of six Symbiodinium isolates. Bulletin of Marine Science. 79:113–126.
  • Silverstein RN, Cunning R, Baker AC. 2015. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biology. 21:236–249. doi:10.1111/gcb.12706
  • Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Logan D, Takabayashi M, Toonen RJ, Gates RD. 2011. Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One. 6(1):e15854. doi:10.1371/journal.pone.0015854.
  • Takahashi S, Whitney S, Itoh S, Maruyama T, Badger M. 2008. Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured symbiodinium. Proceedings of the National Academy of Sciences. 105(11):4203–4208. doi:10.1073/pnas.0708554105.
  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG. 2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National Academy of Sciences. 101:13531–13535. doi:10.1073/pnas.0402907101.
  • Trench RK. 1993. Microalgal –invertebrate symbiosis: a review. Endocytobiosis and Cell Research. 9:135–175.
  • Venn AA, Loram JE, Douglas AE. 2008. Photosynthetic symbioses in animals. Journal of Experimental Botany. 59:1069–1080. doi:10.1093/jxb/erm328.
  • Weis V. 2008. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. Journal of Experimental Biology. 211:3059–3066. doi:10.1242/jeb.009597.
  • Willert DJ, Matyssek R, Herppich W. 1995. Experimentelle pflanzenökologie. Grundlagen und Anwendungen. Berlin Heidelberg: Springer.
  • Wooldridge SA. 2013. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences (online). 10:1647–1658. doi:10.5194/bg-10-1647-2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.