80
Views
0
CrossRef citations to date
0
Altmetric
Original articles

Toxicity of iron-based nanoparticles to Nannochloropsis oculata: effects of Fe2O3-NPs on oxidative stress and fatty acid composition

, ORCID Icon &
Pages 207-217 | Received 06 Jul 2021, Accepted 10 May 2023, Published online: 19 Jun 2023

References

  • Abdolsamad S, Younes G, Yaghoobi MM. 2015. The effect of silver nanoparticles [AgNPs] on Chlorella a and β-carotene content [As two natural antioxidants] in the microalgae chlorella vulgaris. Research & Reviews: Journal of Ecology and Environmental Sciencee. 3:41–45.
  • Azad CS, Kumar A, Chand G, Ranjan RD. 2019. Evaluation of host defense inducing nanoparticles against Alternaria tenuissima (Kunze ex Pers.) wiltshire causing dieback disease of chilli. Journal of Pharmacognosy and Phytochemistry. 8(3):222–226.
  • Barhoumi L, Dewez D. 2013. Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Research International. 1:1–11. doi:10.1155/2013/647974
  • Blée E. 2002. Impact of phyto-oxylipins in plant defense. Trends in Plant Science. 7:315–322. doi:10.1016/S1360-1385(02)02290-2
  • Blokhina O, Virolainen E, Fagersted K. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany. 91:179–194. doi:10.1093/aob/mcf118
  • Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K. 2015. Frugivorous bird guild seasonal patterns in semiarid chaco forests are linked to habitat seasonality but reveal phylogenetic signature. Journal of Scientific Research and Reports. 5:1–5. doi:10.9734/JSRR/2015/14076
  • Chang YN, Zhang M, Xia L, Zhang J, Xing G. 2012. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. 5(12):2850–2871. doi:10.3390/ma5122850
  • Chen P, Powell BA, Mortimer M, PCh K. 2012. Adaptive interactions between zinc oxide nanoparticles and chlorella sp.. Environmental Science & Technology. 46:12178–12185. doi:10.1021/es303303g
  • Cole P. 2008. Nanoparticles in natural aquatic environments: A physical, chemical and ecotoxicological of cerium dioxide and silver. Postgraduate research conference proceedings: water how need drives research underpins solutions to world-wide problems, July 20th-25th. Birmangham, UK: University of Birmingham.
  • Crist RH, Martin JR, Carr D, Watson JR, Clarke HJ, Crist DR. 1994. Interaction of metals and protons with algae. 4. Ion exchange vs adsorption models and a reassessment of scatchard plots; Ion-exchange rates and equilibria compared with calcium alginate. Environmental Science & Technology. 28:1859–1866. doi:10.1021/es00060a016
  • Das P, Lei W, Aziz SS, Obard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology. 102(4):3883–3887. doi:10.1016/j.biortech.2010.11.102
  • Das K, Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers Environmental Science. 2:1–13. doi:10.3389/fenvs.2014.00053
  • Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D. 2012. Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Letters. 4(3):158–165. doi:10.1007/BF03353707
  • Demir V, Ates M, Arslan Z, Camas M, Celik F, Bogatu C, Can SS. 2015. Influence of alpha and gamma-iron oxide nanoparticles on marine microalgae species. Bulletin of Environmental Contamination and Toxicology. 95(6):752–7. doi:10.1007/s00128-015-1633-2
  • Eckardt NA. 2008. Oxylipin signaling in plant stress responses. The Plant Cell. 20:495–497. doi:10.1105/tpc.108.059485
  • Fazelian N, Movafeghi A, Yousefzadi M, Rahimzadeh M. 2019. Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research. 26:17499–17511. doi:10.1007/s11356-019-05130-0
  • Fazelian N, Movafeghi A, Yousefzadi M, Rahimzadeh M, Zarei M. 2020b. Impact of silver nanoparticles on the growth, fatty acid profile, and antioxidative response of Nannochloropsis oculata. Acta Physiologiae Plantarum. 42: 126. doi:10.1007/s11738-020-03101-4
  • Fazelian N, Yousefzadi M, Movafeghi A. 2020a. Algal response to metal oxide nanoparticles: Analysis of growth, protein content, and fatty acid composition. Bioenergy Research. 13(2):1–11. doi:10.1007/s12155-020-10099-7
  • Hasheminasab H, Assad MT, Aliakbari A, Sahhafi SR. 2012. Influence of Drouth stress on oxidative damage and antioxidant defense systems in tolerant and susceptible wheat genotips. Journal of Agricultural Science. 8:20–30. doi:10.5539/jas.v4n8p20
  • Hazani AA, Ibrahim MM, Shehata AI, El-gaaly GA, Daoud M, Fouad D, et al. 2013. Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta. Archives of Biological Sciences. 65(4):1447–1457. doi:10.2298/ABS1304447H
  • Hazeem L, Abdul Waheed F, Rashdan S, Bououdina M. 2015. Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of picochlorum sp.. Environmental Science and Pollution Research. 22 (15): 11728-11739. doi:10.1007/s11356-015-4370-5
  • He D, Bligh M, Waite TD. 2013. Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environmental Science & Technology. 47:9148–9156. doi:10.1021/es400391a
  • He M, Yan Y, Pei F, Wu M, Gebreluel T, Sh Z, Ch W. 2017. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Scientific Reports. 7:15526–15538. doi:10.1038/s41598-017-15667-0
  • Kadar E, Rooks P, Lakey C, White DA. 2012. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Science of the Total Environment. 439:8-17. doi:10.1016/j.scitotenv.2012.09.010
  • Kang NK, Lee B, Choi GG, Park MM, Lim MS, Yang J. 2014. Enhancing lipid productivity of chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean Journal of Chemical Engineering. 31:861–867. doi:10.1007/s11814-013-0258-6
  • Kim CS, Cho YC. 2000. Screening for antioxidant activity in some red tide dinoflagellates. Algae. 15(1):23–28.
  • Kim S, Choi J.E, Choi J, Chung K.H, Park K, Yi J, Ryu D.Y. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology In Vitro. 23: 1076-1084. doi:10.1016/j.tiv.2009.06.001
  • Ko KS, Kod DS, Kong IC. 2018. Toxicity evaluation of individual and mixtures of nanoparticles based on algal chlorophyll content and cell count. Materials. 11:1–10. doi:10.3390/ma11010121
  • Lei C, Zhang L, Yang K, Zhu L, Lin D. 2016. Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution. 218:505–512. doi:10.1016/j.envpol.2016.07.030
  • Lubick N. 2008. Nanosilver toxicity: ions, nanoparticles—Or both?. Environmental Science & Technology. 42(23):8617. doi:10.1021/es8026314
  • Machu L, Misurcova L, Ambrozova JV, Orsavova J, Micek J, Sochor J, Jurikova T. 2015. Phenolic content and antioxidant capacity in algal food products. Molecules. 20:1118–1133. doi:10.3390/molecules20011118
  • Mashock MJ, Zanon T, Kappell AD, Petrella LN, Andersen EC, Hristova KR. 2016. Copper oxide nanoparticles impact several toxicological endpoints and cause neurodegeneration in Caenorhabditis elegans. PLoS One. 11 (12): e0167613-19. doi:10.1371/journal.pone.0167613
  • Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG. 2013. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquatic Toxicology. 142-143:431–440. doi:10.1016/j.aquatox.2013.09.015
  • Miller L, Berger T. 1985. Bacteria identification by gas chromatography of whole cell fatty acids. In Hewlett-Packard Co, application note. Avondale, PA: Hewlett-Packard Co.; 228–41.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7(9):405–410. doi:10.1016/S1360-1385(02)02312-9
  • Mohammed Sadiq I, Dalai S, Chandrasekaran N, Mukherjee A. 2011. Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp.. Ecotoxicology and Environmental Safety. 74: 1180-1187. doi:10.1016/j.ecoenv.2011.03.006
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R. 2006. Toxicity of silver Nanoparticles to Chlamydomonas reinhardtii. Environmental Science & Technology. 42:8959–8964. doi:10.1021/es801785m
  • Pádrová K, Lukavský J, Nedbalová L, Čejková A, Cajthaml T, Sigler K, Vítová M, Řezanka T. 2015. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. Journal of Applied Phycology. 27:1443–1451. doi:10.1007/s10811-014-0477-1
  • Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60:324–349. doi:10.1016/j.ecoenv.2004.06.010
  • Rastar M, Hosseini Shekarabi SP, Shamsaie Mehrgan M, Sabzi S. 2018. Effect of iron and zinc concentrations on growth performance and biochemical composition of Haematococcus pluvialis: A comparison between nanoparticles and their corresponding metals bulks. Journal of Algal Biomass Utilization. 9 (2): 59-67.
  • Repetto M, Semprine J, Boveris A. 2012. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. International Journal of Integrative Medicine. 1–29. doi:10.5772/45943
  • Sarvajeet SG, Narendera T. 2010. Reactive oxygen species and antioxidant machinary in a biotic stress tolerance in crop plants. Annual Review. Plant Physiology and Biochemistry. 3:1–22. doi:10.1016/j.plaphy.2010.08.016
  • Sudhakar C, Lakshmi A, Giridarakumar S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science. 161:613–619. doi:10.1016/S0168-9452(01)00450-2
  • Suman TY, Radhika Rajasree SR, Kirubagaran R. 2015. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety. 113:23–30. doi:10.1016/j.ecoenv.2014.11.015
  • Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ. 2012. Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small. 8: 3016–3027. doi:10.1002/smll.201200575
  • Van Hoecke K, De Schamphelaere KA, Van der Meeren P, Lcucas S, Janssen CR. 2008. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environmental Toxicology and Chemistry. 27: 1948–1957. doi:10.1897/07-634.1
  • Wang F, Guan W, Xu L, Ding Z, Ma H, Ma A, Terry N. 2019. Effects of nanoparticles on algae: adsorption, distribution, ecotoxicity and fate. Applied Sciences. 9:1–14. doi:10.3390/app9081534
  • Zhao J, Cao X, Liu X, Wang Z, Zhang C, White JC, Xing B. 2016. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake and toxicity. Nanotoxicology. 10:1–31. doi:10.1080/17435390.2016.1206149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.