781
Views
59
CrossRef citations to date
0
Altmetric
Original Articles

System development, formability quality and microstructure evolution of selective laser-melted magnesium

, , , , , , & show all
Pages 173-181 | Received 21 Jun 2016, Accepted 05 Jul 2016, Published online: 02 Aug 2016

References

  • Aghion, E. and Bronfin, B., 2000. Magnesium alloys development towards the 21st century. Materials Science Forum, 350, 19–30. doi: 10.4028/www.scientific.net/MSF.350-351.19
  • American Society for Testing Materials, 2004. Standard test methods for tension testing of metallic materials. West Conshohocken, PA: ASTM E8–04; ASTM International.
  • Atrens, A., Liu, M., and Abidin, N. I. Z., 2011. Corrosion mechanism applicable to biodegradable magnesium implants. Materials Science and Engineering: B, 176, 1609–1636. doi: 10.1016/j.mseb.2010.12.017
  • Chaya, A., et al., 2015. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomaterialia, 18, 262–269. doi: 10.1016/j.actbio.2015.02.010
  • Chen, H., et al., 2010. Optimization of annealing treatment parameters in a twin roll cast and warm rolled ZK60 alloy sheet. Materials Science and Engineering: A, 527, 1236–1242. doi: 10.1016/j.msea.2009.09.057
  • Gu, D.D., et al., 2012. Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 57, 133–164. doi: 10.1179/1743280411Y.0000000014
  • Jia, Q. and Gu, D., 2014. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. Journal of Alloys and Compounds, 585, 713–721. doi: 10.1016/j.jallcom.2013.09.171
  • Jonasova, L., et al., 2004. Biomimetic apatite formation on chemically treated titanium. Biomaterials, 25, 1187–1194. doi: 10.1016/j.biomaterials.2003.08.009
  • Kim, W.C., et al., 2008. Influence of Ca on the corrosion properties of magnesium for biomaterials. Materials Letters, 62, 4146–4148. doi: 10.1016/j.matlet.2008.06.028
  • Kokubo, T., 1996. Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochimica Acta, 280-281, 479–490. doi: 10.1016/0040-6031(95)02784-X
  • Li, Z., et al., 2008. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials, 29, 1329–1344. doi: 10.1016/j.biomaterials.2007.12.021
  • Ng, C.C., et al., 2011. Microstructure and mechanical properties of selective laser melted magnesium. Applied Surface Science, 257, 7447–7454. doi: 10.1016/j.apsusc.2011.03.004
  • Nordlien, J., et al., 1997. A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion Science, 39, 1397–1414. doi: 10.1016/S0010-938X(97)00037-1
  • Orlov, D., et al., 2014. Particle evolution in Mg–Zn–Zr alloy processed by integrated extrusion and equal channel angular pressing: Evaluation by electron microscopy and synchrotron small-angle X-ray scattering. Acta Materialia, 72, 110–124. doi: 10.1016/j.actamat.2014.03.027
  • Qin, H., et al., 2015. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy. Biomaterials, 53, 211–220. doi: 10.1016/j.biomaterials.2015.02.096
  • Savalani, M.M. and Pizarro, J.M., 2016. Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium. Rapid Prototyping Journal, 22, 115–122. doi: 10.1108/RPJ-07-2013-0076
  • Shuai, C., et al., 2011. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology, 22, 285703. doi: 10.1088/0957-4484/22/28/285703
  • Sing, S.L., et al., 2016. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. Journal of Orthopaedic Research, 34, 369–385. doi: 10.1002/jor.23075
  • Staiger, M.P., et al., 2006. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27, 1728–1734. doi: 10.1016/j.biomaterials.2005.10.003
  • Sun, Y., Moroz, A., and Alrbaey, K., 2014. Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel. Journal of Materials Engineering and Performance, 23, 518–526. doi: 10.1007/s11665-013-0784-8
  • Thijs, L., et al., 2010. A study of the microstructural evolution during selective laser melting of Ti–6Al–4 V. Acta Materialia, 58, 3303–3312. doi: 10.1016/j.actamat.2010.02.004
  • Xiao, W., et al., 2012. Casting defects and mechanical properties of high pressure die cast Mg-Zn-Al-RE alloys. Advanced Engineering Materials, 14, 68–76. doi: 10.1002/adem.201100149
  • Xie, D., et al., 2013. Decreasing pores in a laser cladding layer with pulsed current. Chinese Optics Letters, 11, 54–57.
  • Zhu, H., Lu, L., and Fuh, J.Y.H., 2006. Study on shrinkage behaviour of direct laser sintering metallic powder. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 220, 183–190. doi: 10.1243/095440505X32995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.