581
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Organ regeneration: integration application of cell encapsulation and 3D bioprinting

, , &
Pages 279-289 | Received 20 Mar 2017, Accepted 31 May 2017, Published online: 18 Jun 2017

References

  • Abate, A.R., Thiele, J., and Weitz, D.A., 2011. One-step formation of multiple emulsions in microfluidics. Lab on a Chip, 11, 253–258. doi: 10.1039/C0LC00236D
  • Abate, A.R. and Weitz, D.A., 2009. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small, 5, 2030–2032. doi: 10.1002/smll.200900569
  • Agarwala, S., 2016. A perspective on 3D bioprinting technology: present and future. American Journal of Engineering and Applied Sciences, 9 (2), 985–990. doi: 10.3844/ajeassp.2016.985.990
  • Aikawa, T., et al., 2012. Spherical phospholipid polymer hydrogels for cell encapsulation prepared with a flow-focusing microfluidic channel device. Langmuir: The ACS Journal of Surfaces and Colloids, 28, 2145–2150. doi: 10.1021/la2037586
  • Armstrong, J.P., et al., 2016. 3D bioprinting using a templated porous bioink. Advanced Healthcare Materials, 5, 1724–1730. doi: 10.1002/adhm.201600022
  • Awad, H.A., et al., 2004. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25, 3211–3222. doi: 10.1016/j.biomaterials.2003.10.045
  • Axpe, E. and Oyen, M.L., 2016. Applications of alginate-based bioinks in 3D bioprinting. International Journal of Molecular Sciences, 17, 1–11. doi: 10.3390/ijms17121976
  • Billiet, T., et al., 2014. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35, 49–62. doi: 10.1016/j.biomaterials.2013.09.078
  • Boruah, N. and Dimitrakopoulos, P., 2015. Motion and deformation of a droplet in a microfluidic cross-junction. Journal of Colloid and Interface Science, 453, 216–225. doi: 10.1016/j.jcis.2015.04.067
  • Bourget, J.M., et al., 2016. Patterning of endothelial cells and mesenchymal stem cells by laser-assisted bioprinting to study cell migration. BioMed Research International, 2016, 1–7. doi: 10.1155/2016/3569843
  • Chen, Y., Wu, L., and Zhang, L., 2015. Dynamic behaviors of double emulsion formation in a flow-focusing device. International Journal of Heat and Mass Transfer, 82, 42–50. doi: 10.1016/j.ijheatmasstransfer.2014.11.027
  • Christensen, K., et al., 2015. Freeform inkjet printing of cellular structures with bifurcations. Biotechnology and Bioengineering, 112 (5), 1047–1055. doi: 10.1002/bit.25501
  • Chu, L.-Y., et al., 2007. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 46 (47), 8970–8974. doi: 10.1002/anie.200701358
  • Crompton, K.E., et al., 2007. Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials, 28, 441–449. doi: 10.1016/j.biomaterials.2006.08.044
  • Cui, H., et al., 2017. 3D bioprinting for organ regeneration. Advanced Healthcare Materials, 6 (1), 1601118. doi: 10.1002/adhm.201601118
  • Darling, E.M., et al., 2008. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. Journal of Biomechanics, 41, 454–464. doi: 10.1016/j.jbiomech.2007.06.019
  • Delrot, P., et al., 2016. Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusing. Physical Review Applied, 6 (2), 33. doi: 10.1103/PhysRevApplied.6.024003
  • Duan, B., et al., 2013. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A, 101A, 1255–1264. doi: 10.1002/jbm.a.34420
  • Faulkner-Jones, A., et al., 2013. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication, 5, 015013. doi: 10.1088/1758-5082/5/1/015013
  • Garstecki, P., et al., 2004. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters, 85, 2649–2651. doi: 10.1063/1.1796526
  • Gerecht, S., et al., 2007. A porous photocurable elastomer for cell encapsulation and culture. Biomaterials, 28, 4826–4835. doi: 10.1016/j.biomaterials.2007.07.039
  • Grellier, M., et al., 2009. The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials, 30, 3271–3278. doi: 10.1016/j.biomaterials.2009.02.033
  • Gruene, M., et al., 2011. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Engineering Part C: Methods, 17, 79–87. doi: 10.1089/ten.tec.2010.0359
  • Gu, Y., Kojima, H., and Miki, N., 2011. Theoretical analysis of 3D emulsion droplet generation by a device using coaxial glass tubes. Sensors and Actuators A: Physical, 169, 326–332. doi: 10.1016/j.sna.2011.02.043
  • Haque, T., et al., 2005. In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnology Letters, 27, 317–322. doi: 10.1007/s10529-005-0687-3
  • He, P.J., et al., 2016. Laser direct-write for fabrication of three-dimensional paper-based devices. Lab on a Chip, 16, 3296–3303. doi: 10.1039/C6LC00789A
  • Hernandez, R.M., et al., 2010. Microcapsules and microcarriers for in situ cell delivery. Advanced Drug Delivery Reviews, 62, 711–730. doi: 10.1016/j.addr.2010.02.004
  • Hockaday, L.A., et al., 2014. 3D-Printed hydrogel technologies for tissue-engineered heart valves. 3D Printing and Additive Manufacturing, 1, 122–136. doi: 10.1089/3dp.2014.0018
  • Hunt, N.C. and Grover, L.M., 2010. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology Letters, 32, 733–742. doi: 10.1007/s10529-010-0221-0
  • Hwang, C.M., et al., 2010. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication, 2, 035003. doi: 10.1088/1758-5082/2/3/035003
  • Iacovacci, V., et al., 2016. The bioartificial pancreas (BAP): biological, chemical and engineering challenges. Biochemical Pharmacology, 100, 12–27. doi: 10.1016/j.bcp.2015.08.107
  • Jang, H., et al., 2013. Automated formation of multicomponent-encapuslating vesosomes using continuous flow microcentrifugation. Biotechnology Journal, 8, 1341–1346. doi: 10.1002/biot.201200388
  • Kaklamani, G., et al., 2014. Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the Mechanical Behavior of Biomedical Materials, 36, 135–142. doi: 10.1016/j.jmbbm.2014.04.013
  • Kennedy, T.E. and Tessier-Lavigne, M., 1995. Guidance and induction of branch formation in developing axons by target-derived diffusible factors. Current Opinion in Neurobiology, 5, 83–90. doi: 10.1016/0959-4388(95)80091-3
  • Khademhosseini, A., et al., 2006. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. Journal of Biomedical Materials Research Part A, 79A, 522–532. doi: 10.1002/jbm.a.30821
  • Kim, D.H., et al., 2015. Phenotypic stability, matrix elaboration and functional maturation of nucleus pulposus cells encapsulated in photocrosslinkable hyaluronic acid hydrogels. Acta Biomaterialia, 12, 21–29. doi: 10.1016/j.actbio.2014.10.030
  • Kim, J. and Vanapalli, S.A., 2013. Microfluidic production of spherical and nonspherical fat particles by thermal quenching of crystallizable oils. Langmuir, 29, 12307–12316. doi: 10.1021/la401338m
  • Koch, L., et al., 2017. Laser assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: a parametric study. International Journal of Bioprinting, 3 (1), 1–12. doi: 10.18063/IJB.2017.01.001
  • Kucukgul, C., et al., 2013. 3D hybrid bioprinting of macrovascular structures. Procedia Engineering, 59, 183–192. doi: 10.1016/j.proeng.2013.05.109
  • Kucukgul, C., et al., 2015. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnology and Bioengineering, 112, 811–821. doi: 10.1002/bit.25493
  • Kumachev, A., et al., 2011. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials, 32, 1477–1483. doi: 10.1016/j.biomaterials.2010.10.033
  • Lee, J.M. and Yeong, W.Y., 2016. Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Advanced Healthcare Materials, 5 (22), 2856–2865. doi: 10.1002/adhm.201600435
  • Lee, H., et al., 2017. Recent cell printing systems for tissue engineering. International Journal of Bioprinting, 3 (1), 1–15. doi: 10.18063/IJB.2017.01.004
  • Lee, W., et al., 2009. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport, 20, 798–803. doi: 10.1097/WNR.0b013e32832b8be4
  • Li, R.H., Altreuter, D.H., and Gentile, F.T., 1996. Transport characterization of hydrogel matrices for cell encapsulation. Biotechnology and Bioengineering, 50 (4), 365–373. doi: 10.1002/(SICI)1097-0290(19960520)50:4<365::AID-BIT3>3.0.CO;2-J
  • Li, H., Liu, S., Lin, L., 2016. Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. International Journal of Bioprinting, 2 (2), 54–66. doi: 10.18063/IJB.2016.02.007
  • Li, F., et al., 2017. Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration. ACS Applied Materials & Interfaces, 9 (10), 8589–8601. doi: 10.1021/acsami.7b00728
  • Lin, S.C., et al., 2017. Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair. Materials Science and Engineering: C, 73, 653–664. doi: 10.1016/j.msec.2016.12.016
  • Liu, Z., et al., 2017. Three-dimensional hepatic lobule-like tissue constructs using cell-microcapsule technology. Acta Biomaterialia, 50, 178–187. doi: 10.1016/j.actbio.2016.12.020
  • Marro, A., Bandukwala, T., and Mak, W., 2016. Three-dimensional printing and medical imaging: a review of the methods and applications. Current Problems in Diagnostic Radiology, 45 (1), 2–9. doi: 10.1067/j.cpradiol.2015.07.009
  • Matsuda, T., 2004. Recent progress of vascular graft engineering in Japan. Artificial Organs, 28 (1), 64–71. doi: 10.1111/j.1525-1594.2004.07324.x
  • Mazzitelli, S., et al., 2011. Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells. Journal of Cell Communication and Signaling, 5, 157–165. doi: 10.1007/s12079-010-0105-z
  • Mazzitelli, S., et al., 2013. Preparation of cell-encapsulation devices in confined microenvironment. Advanced Drug Delivery Reviews, 65 (11–12), 1533–1555. doi: 10.1016/j.addr.2013.07.021
  • Mehrban, N., Teoh, G.Z., Birchall, M.A., 2016. 3D bioprinting for tissue engineering: stem cells in hydrogels. International Journal of Bioprinting, 2 (1), 6–19.
  • Michael, S., et al., 2013. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLOS One, 8, e57741. doi: 10.1371/journal.pone.0057741
  • Morimoto, Y., Kuribayashi-Shigetomi, K., and Takeuchi, S., 2011. A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets. Journal of Micromechanics and Microengineering, 21, 054031. doi: 10.1088/0960-1317/21/5/054031
  • Ng, W.L., et al., 2016. Skin bioprinting: impending reality or fantasy? Trends in Biotechnology, 34 (9), 689–699. doi: 10.1016/j.tibtech.2016.04.006
  • Nicodemus, G.D. and Bryant, S.J., 2008. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering Part B: Reviews, 14, 149–165. doi: 10.1089/ten.teb.2007.0332
  • Norotte, C., et al., 2009. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30, 5910–5917. doi: 10.1016/j.biomaterials.2009.06.034
  • Okushima, S., et al., 2004. Controlled production of monodisperse double emulsions by Two-step droplet breakup in microfluidic devices. Langmuir, 20, 9905–9908. doi: 10.1021/la0480336
  • Oliveira, M.B., Hatami, J., and Mano, J.F., 2016. Coating strategies using layer-by-layer deposition for cell encapsulation. Chemistry – An Asian Journal, 11 (12), 1753–1764. doi: 10.1002/asia.201600145
  • Orive, G., et al., 2004. History, challenges and perspectives of cell microencapsulation. Trends in Biotechnology, 22, 87–92. doi: 10.1016/j.tibtech.2003.11.004
  • Orive, G., et al., 2015. Cell encapsulation: technical and clinical advances. Trends in Pharmacological Sciences, 36, 537–546. doi: 10.1016/j.tips.2015.05.003
  • Ozbolat, I.T., Chen, H., and Yu, Y., 2014. Development of ‘multi-arm bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robotics and Computer-Integrated Manufacturing, 30, 295–304. doi: 10.1016/j.rcim.2013.10.005
  • Panwar, A. and Tan, L., 2016. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules, 21 (6), 685. doi: 10.3390/molecules21060685
  • Pati, F., Gantelius, J., and Svahn, H.A., 2016. 3D bioprinting of tissue/organ models. Angewandte Chemie International Edition, 55 (15), 4650–4665. doi: 10.1002/anie.201505062
  • Robbins, J.B., et al., 2013. A novel in vitro 3D bioprinted liver tissue system for drug development. The American Society of Experimental Biology, Boston, MA.
  • Schacht, K. and Scheibel, T., 2014. Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Current Opinion in Biotechnology, 29, 62–69. doi: 10.1016/j.copbio.2014.02.015
  • Shoichet, M.S. and Rein, D.H., 1996. In vivo biostability of a polymeric hollow fibre membrane for cell encapsulation. Biomaterials, 17, 285–290. doi: 10.1016/0142-9612(96)85566-9
  • Steegmans, M.L.J., Schroën, K.G.P.H., and Boom, R.M., 2009. Characterization of emulsification at flat microchannel Y junctions. Langmuir, 25, 3396–3401. doi: 10.1021/la8035852
  • Sundaramurthi, D., Rauf, S., and Hauser, C., 2016. 3D bioprinting technology for regenerative medicine applications. International Journal of Bioprinting, 2 (2), 9–26. doi: 10.18063/IJB.2016.02.010
  • Takeuchi, S., et al., 2005. An axisymmetric flow-focusing microfluidic device. Advanced Materials, 17, 1067–1072. doi: 10.1002/adma.200401738
  • Tan, J., et al., 2008. Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chemical Engineering Journal, 136, 306–311. doi: 10.1016/j.cej.2007.04.011
  • Tan, H., et al., 2009. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30 (13), 2499–2506. doi: 10.1016/j.biomaterials.2008.12.080
  • Tse, C.C.W., et al., 2016. Utilising inkjet printed paraffin wax for cell patterning applications. International Journal of Bioprinting, 2 (1), 35–44.
  • Utada, A.S., et al., 2007. Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bulletin, 32, 702–708. doi: 10.1557/mrs2007.145
  • Vladisavljevic, G.T., et al., 2013. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews, 65 (11-12), 1626–1663. doi: 10.1016/j.addr.2013.07.017
  • Williams, C.G., et al., 2005. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 26, 1211–1218. doi: 10.1016/j.biomaterials.2004.04.024
  • Wilson, J.L., et al., 2014. Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates. Biotechnology and Bioengineering, 111, 618–631. doi: 10.1002/bit.25121
  • Wong Po Foo, C.T., et al., 2009. Two-component protein-engineered physical hydrogels for cell encapsulation. Proceedings of the National Academy of Sciences, 106, 22067–22072. doi: 10.1073/pnas.0904851106
  • Wszola, M., et al., 2015. Bionic pancreas and bionic organs–how far we are from the success. MEDtube Science, 3 (3), 25–27.
  • Xi, H.-D., et al., 2016. AC electric field induced droplet deformation in a microfluidic T-junction. Lab on a Chip, 16 (16), 2982–2986. doi: 10.1039/C6LC00448B
  • Yang, E.K., et al., 2000. Tissue engineered artificial skin composed of dermis and epidermis. Artificial Organs, 24, 7–17. doi: 10.1046/j.1525-1594.2000.06334.x
  • Yang, H., Zhou, Q., and Fan, L.-S., 2013. Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction. Chemical Engineering Science, 87, 100–110. doi: 10.1016/j.ces.2012.10.008
  • Yeh, C.-H., et al., 2009. Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles. Sensors and Actuators A: Physical, 151, 231–236. doi: 10.1016/j.sna.2009.02.036
  • Yeom, S. and Lee, S.Y., 2011. Size prediction of drops formed by dripping at a micro T-junction in liquid–liquid mixing. Experimental Thermal and Fluid Science, 35, 387–394. doi: 10.1016/j.expthermflusci.2010.10.009
  • Zhang, X. and Zhang, Y., 2015. Tissue engineering applications of three-dimensional bioprinting. Cell Biochemistry and Biophysics, 72 (3), 777–782. doi: 10.1007/s12013-015-0531-x
  • Zhao, Y., et al., 2015. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication, 7 (4), 045002. doi: 10.1088/1758-5090/7/4/045002
  • Zhong, C., et al., 2016. Human hepatocytes loaded in 3D bioprinting generate mini-liver. Hepatobiliary & Pancreatic Diseases International, 15 (5), 512–518. doi: 10.1016/S1499-3872(16)60119-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.