350
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Wrapping effect of secondary phases on the grains: increased corrosion resistance of Mg–Al alloys

, , , , , & show all
Pages 292-300 | Received 09 Apr 2018, Accepted 21 May 2018, Published online: 16 Jul 2018

References

  • Aghion, E., et al., 2015.Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (8), 1541–1548. doi: 10.1002/jbm.b.33335
  • AlMangour, B., et al., 2018.Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting. Materials Science and Engineering: A, 712, 812–818. doi: 10.1016/j.msea.2017.11.126
  • Baek, S.M., et al., 2017.Role of alloyed Y in improving the corrosion resistance of extruded Mg–Al–Ca-based alloy. Corrosion Science, 118: 227–232. doi: 10.1016/j.corsci.2017.01.022
  • Gao, C., et al., 2017.Bone biomaterials and interactions with stem cells. Bone Research, 5, 17059. doi: 10.1038/boneres.2017.59
  • Homayun, B., and Afshar, A., 2014.Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg–Zn–Al–Ca alloys as biodegradable materials. Journal of Alloys and Compounds, 607, 1–10. doi: 10.1016/j.jallcom.2014.04.059
  • Hong, D., et al., 2013. In vitro degradation and cytotoxicity response of Mg–4% Zn–0.5% Zr (ZK40) alloy as a potential biodegradable material. Acta Biomaterialia, 9, 8534–8547. doi: 10.1016/j.actbio.2013.07.001
  • Hou, X., et al., 2017. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification. Materials Science and Engineering: C, 78, 1061–1071. doi: 10.1016/j.msec.2017.04.128
  • Jeong, Y.S., and Kim, W.J., 2014. Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corrosion Science, 82, 392–403. doi: 10.1016/j.corsci.2014.01.041
  • Jiang, B., et al., 2017. Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets. Corrosion Science, 126, 374–380. doi: 10.1016/j.corsci.2017.08.004
  • Kondoh, K., et al., 2011. Thermo-dynamic analysis on solid-state reduction of CaO particles dispersed in Mg–Al alloy. Materials Chemistry and Physics, 129, 631–640. doi: 10.1016/j.matchemphys.2011.05.017
  • Lee, J.T.Y., et al., 2011. Cell culture medium as an alternative to conventional simulated body fluid. Acta Biomaterialia, 7 (6), 2615–2622. doi: 10.1016/j.actbio.2011.02.034
  • Li, C.Q., et al., 2018a. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys. Electrochimica Acta, 260, 55–64. doi: 10.1016/j.electacta.2017.11.091
  • Li, G., et al., 2018b. Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: an in vitro and in vivo study. Acta Biomaterialia, 65, 486. doi: 10.1016/j.actbio.2017.10.033
  • Liu, L., et al., 2017. Rare earth element yttrium modified Mg-Al-Zn alloy: microstructure, degradation properties and hardness. Materials, 10 (5), 477. doi: 10.3390/ma10050477
  • Liu, R.L., et al., 2018. Reducing the corrosion rate of magnesium via microalloying additions of group 14 and 15 elements. Electrochimica Acta, 260, 184–195. doi: 10.1016/j.electacta.2017.11.062
  • Maghsoudi, M.H., Zarei-Hanzaki, A., and Abedi, H.R., 2014. Modification of the grain structure, γ phase morphology and texture in AZ81 Mg alloy through accumulative back extrusion. Materials Science & Engineering A, 595, 99–108. doi: 10.1016/j.msea.2013.11.095
  • Mingo, B., et al., 2017. Corrosion of Mg-9Al alloy with minor alloying elements (Mn, Nd, Ca, Y and Sn), Materials & Design, 130, 48–58. doi: 10.1016/j.matdes.2017.05.048
  • Mukhametkaliyev, T.M., et al., 2017. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Materials Science and Engineering: C, 75, 95–103. doi: 10.1016/j.msec.2017.02.033
  • Nam, N.D., et al., 2012. Effect of calcium oxide on the corrosion behaviour of AZ91 magnesium alloy. Corrosion Science, 64, 263–271. doi: 10.1016/j.corsci.2012.07.026
  • Ren, L.B., et al., 2017. Effect of Y addition on the aging hardening behavior and precipitation evolution of extruded Mg-Al-Zn alloys. Materials Science and Engineering: A, 690, 195–207. doi: 10.1016/j.msea.2017.02.102
  • Shuai, C., et al., 2017. Nd-induced honeycomb structure of intermetallic phase enhances the corrosion resistance of Mg alloys for bone implants. Journal of Materials Science. Materials in Medicine, 28, 130. doi: 10.1007/s10856-017-5945-0
  • Shuai, C., et al., 2016. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy. Journal of Alloys and Compounds, 691, 961–969. doi: 10.1016/j.jallcom.2016.09.019
  • Taltavull, C., et al., 2014. Corrosion behaviour of laser surface melted magnesium alloy AZ91D. Materials & Design, 57, 40–50. doi: 10.1016/j.matdes.2013.12.069
  • Taltavull, C., et al., 2012. Selective laser surface melting of a magnesium-aluminium alloy. Materials Letters, 85, 98–101. doi: 10.1016/j.matlet.2012.07.004
  • Thijs, L., et al., 2010. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, 58, 3303–3312. doi: 10.1016/j.actamat.2010.02.004
  • Wei, K., et al., 2014. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Materials Science and Engineering: A, 611, 212–222. doi: 10.1016/j.msea.2014.05.092
  • Wu, P.P., et al., 2017. Effect of extrusion on corrosion properties of Mg-2Ca-χAl (χ = 0, 2, 3, 5) alloys. Corrosion Science, 127, 280–290. doi: 10.1016/j.corsci.2017.08.014
  • Yang, J., et al., 2018. A review on the exploitation of biodegradable magnesium-based composites for medical applications. Biomedical Materials, 13 (2), 022001. doi: 10.1088/1748-605X/aa8fa0
  • Yang, J., et al., 2016a. Effect of Ca addition on the corrosion behavior of Mg–Al–Mn alloy. Applied Surface Science, 369, 92–100. doi: 10.1016/j.apsusc.2016.01.283
  • Yang, Y., et al., 2016b. System development, formability quality and microstructure evolution of selective laser-melted magnesium. Virtual and Physical Prototyping, 11, 173–181. doi: 10.1080/17452759.2016.1210522
  • Zeng, R.C., et al., 2015. In vitro corrosion of as-extruded Mg–Ca alloys—The influence of Ca concentration. Corrosion Science, 96, 23–31. doi: 10.1016/j.corsci.2015.03.018
  • Zhao, D., et al., 2017. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials, 112, 287–302. doi: 10.1016/j.biomaterials.2016.10.017
  • Zheng, Y.F., Gu, X.N., and Witte F., 2014.Biodegradable metals. Materials Science and Engineering: R: Reports, 77, 1–34. doi: 10.1016/j.mser.2014.01.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.