4,024
Views
38
CrossRef citations to date
0
Altmetric
Articles

A comprehensive study on variability of relative density in selective laser melting of Ti-6Al-4V

, , &
Pages 349-359 | Received 26 Apr 2019, Accepted 28 Apr 2019, Published online: 22 May 2019

References

  • Averyanova, M., P. Bertrand, and B. Verquin. 2011. “Studying the Influence of Initial Powder Characteristics on the Properties of Final Parts Manufactured by the Selective Laser Melting Technology: A Detailed Study on the Influence of the Initial Properties of Various Martensitic Stainless Steel Powders on the Final Microstructures and Mechanical Properties of Parts Manufactured Using an Optimized SLM Process is Reported in this Paper.” Virtual and Physical Prototyping 6 (4): 215–223. doi: 10.1080/17452759.2011.594645
  • Baufeld, B., O. Van der Biest, and R. Gault. 2010. “Additive Manufacturing of Ti–6Al–4 V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties.” Materials & Design 31: S106–S111. doi: 10.1016/j.matdes.2009.11.032
  • Berthier, J. 2008. Micro-drops and Digital Microfluidics. Norwich, NY: William Andrew.
  • Calignano, F. 2018. “Investigation of the Accuracy and Roughness in the Laser Powder Bed Fusion Process.” Virtual and Physical Prototyping 13 (2): 97–104. doi: 10.1080/17452759.2018.1426368
  • Cao, S., Ruikun Chu, Xigen Zhou, Kun Yang, Qingbo Jia, Chao Voon Samuel Lim, Aijun Huang, and Xinhua Wu. 2018. “Role of Martensite Decomposition in Tensile Properties of Selective Laser Melted Ti-6Al-4V.” Journal of Alloys and Compounds 744: 357–363. doi: 10.1016/j.jallcom.2018.02.111
  • Dadbakhsh, S., L. Hao, and N. Sewell. 2012. “Effect of Selective Laser Melting Layout on the Quality of Stainless Steel Parts.” Rapid Prototyping Journal 18 (3): 241–249. doi: 10.1108/13552541211218216
  • Du Plessis, A., I. Yadroitsava, I. Yadroitsev, S. G. le Roux, and D. C. Blaine. 2018. “Numerical Comparison of Lattice Unit Cell Designs for Medical Implants by Additive Manufacturing.” Virtual and Physical Prototyping 13 (4): 266–281. doi: 10.1080/17452759.2018.1491713
  • Facchini, L., Emanuele Magalini, Pierfrancesco Robotti, Alberto Molinari, Simon Höges, and Konrad Wissenbach. 2010. “Ductility of a Ti-6Al-4V Alloy Produced by Selective Laser Melting of Prealloyed Powders.” Rapid Prototyping Journal 16 (6): 450–459. doi: 10.1108/13552541011083371
  • Gibson, I., T. Kvan, and L. Wai Ming. 2002. “Rapid Prototyping for Architectural Models.” Rapid Prototyping Journal 8 (2): 91–95. doi: 10.1108/13552540210420961
  • Gibson, I., D. W. Rosen, and B. Stucker. 2015. Additive Manufacturing Technologies. New York: Springer.
  • Gorny, B., T. Niendorf, J. Lackmann, M. Thoene, T. Troester, and H. J. Maier. 2011. “In situ Characterization of the Deformation and Failure Behavior of Non-stochastic Porous Structures Processed by Selective Laser Melting.” Materials Science and Engineering: A 528 (27): 7962–7967. doi: 10.1016/j.msea.2011.07.026
  • Jhabvala, J., Eric Boillat, Thibaud Antignac, and Rémy Glardon. 2010. “On the Effect of Scanning Strategies in the Selective Laser Melting Process.” Virtual and Physical Prototyping 5 (2): 99–109. doi: 10.1080/17452751003688368
  • Jovanović, M. T., S. Tadić, S. Zec, Z. Mišković, and I. Bobić. 2006. “The Effect of Annealing Temperatures and Cooling Rates on Microstructure and Mechanical Properties of Investment Cast Ti–6Al–4V Alloy.” Materials & Design 27 (3): 192–199. doi: 10.1016/j.matdes.2004.10.017
  • Khorasani, A. M., Ian Gibson, Mohsen Asadnia, and William O’Neill. 2018. “Mass Transfer and Flow in Additive Manufacturing of a Spherical Component.” The International Journal of Advanced Manufacturing Technology 96 (9–12): 3711–3718. doi: 10.1007/s00170-017-1483-7
  • Khorasani, A. M., Ian Gibson, Umar Shafique Awan, and Alireza Ghaderi. 2019. “The Effect of SLM Process Parameters on Density, Hardness, Tensile Strength and Surface Quality of Ti-6Al-4V.” Additive Manufacturing 25: 176–186. doi: 10.1016/j.addma.2018.09.002
  • Khorasani, A. M., I. Gibson, and A. R. Ghaderi. 2018. “Rheological Characterization of Process Parameters Influence on Surface Quality of Ti-6Al-4V Parts Manufactured by Selective Laser Melting.” The International Journal of Advanced Manufacturing Technology 97 (9–12): 3761–3775.
  • Khorasani, A. M., Ian Gibson, Moshe Goldberg, and Guy Littlefair. 2016. “A Survey on Mechanisms and Critical Parameters on Solidification of Selective Laser Melting During Fabrication of Ti-6Al-4V Prosthetic Acetabular Cup.” Materials & Design 103: 348–355. doi: 10.1016/j.matdes.2016.04.074
  • Khorasani, A. M., Ian Gibson, Moshe Goldberg, and Guy Littlefair. 2017. “Production of Ti-6Al-4 V Acetabular Shell Using Selective Laser Melting: Possible Limitations in Fabrication.” Rapid Prototyping Journal 23 (1): 110–121. doi: 10.1108/RPJ-11-2015-0159
  • Khorasani, A. M., Ian Gibson, Moshe Goldberg, Mohammad Masoud Movahedi, and Guy Littlefair. 2017. “Thermal Stress Flow Analysis in Fabrication of Acetabular Shells using SLM.” KnE Engineering 2 (2): 297–307. doi: 10.18502/keg.v2i2.629
  • Kok, Y., Xipeng Tan, Shu Beng Tor, and Chee Kai Chua. 2015. “Fabrication and Microstructural Characterisation of Additive Manufactured Ti-6Al-4 V Parts by Electron Beam Melting: This Paper Reports that the Microstructure and Micro-hardness of an EMB Part is Thickness Dependent.” Virtual and Physical Prototyping 10 (1): 13–21. doi: 10.1080/17452759.2015.1008643
  • Li, X. P., M. Roberts, Y. J. Liu, C. W. Kang, H. Huang, and T. B. Sercombe. 2015. “Effect of Substrate Temperature on the Interface Bond Between Support and Substrate During Selective Laser Melting of Al–Ni–Y–Co–La Metallic Glass.” Materials & Design (1980–2015) 65: 1–6. doi: 10.1016/j.matdes.2014.08.065
  • Long, T., Xiaohong Zhang, Qianli Huang, Ling Liu, Yong Liu, Junye Ren, Yong Yin, Dengke Wu, and Hong Wu. 2018. “Novel Mg-based Alloys by Selective Laser Melting for Biomedical Applications: Microstructure Evolution, Microhardness and in vitro Degradation Behaviour.” Virtual and Physical Prototyping 13 (2): 71–81. doi: 10.1080/17452759.2017.1411662
  • Malkin, A. Y., and A. I. Isayev. 2017. Rheology: Concepts, Methods, and Applications. ChemTec Publishing, Elsevier.
  • Murr, L., S. A. Quinones, S. M. Gaytan, M. I. Lopez, A. Rodela, E. Y. Martinez, D. H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker. 2009. “Microstructure and Mechanical Behavior of Ti–6Al–4 V Produced by Rapid-layer Manufacturing, for Biomedical Applications.” Journal of the Mechanical Behavior of Biomedical Materials 2 (1): 20–32. doi: 10.1016/j.jmbbm.2008.05.004
  • Qiu, C., Chinnapat Panwisawas, Mark Ward, Hector C. Basoalto, Jeffery W. Brooks, and Moataz M. Attallah. 2015. “On the Role of Melt Flow into the Surface Structure and Porosity Development During Selective Laser Melting.” Acta Materialia 96: 72–79. doi: 10.1016/j.actamat.2015.06.004
  • Sieniawski, J., W. Ziaja, K. Kubiak, and M. Motyka. 2013. Microstructure and Mechanical Properties of High Strength Two-phase Titanium Alloys, in Titanium Alloys-advances in Properties Control. InTech.
  • Sillars, S. A., C. J. Sutcliffe, A. M. Philo, S. G. R. Brown, J. Sienz, and N. P. Lavery. 2018. “The Three-prong Method: A Novel Assessment of Residual Stress in Laser Powder Bed Fusion.” Virtual and Physical Prototyping 13 (1): 20–25. doi: 10.1080/17452759.2017.1392682
  • Simonelli, M., Y. Y. Tse, and C. Tuck. 2014. “Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4 V.” Materials Science and Engineering: A 616: 1–11. doi: 10.1016/j.msea.2014.07.086
  • Spierings, A. B., N. Herres, and G. Levy. 2011. “Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts.” Rapid Prototyping Journal 17 (3): 195–202. doi: 10.1108/13552541111124770
  • Sutton, A. T., Caitlin S. Kriewall, Ming C. Leu, and Joseph W. Newkirk. 2017. “Powder Characterisation Techniques and Effects of Powder Characteristics on Part Properties in Powder-bed Fusion Processes.” Virtual and Physical Prototyping 12 (1): 3–29. doi: 10.1080/17452759.2016.1250605
  • Teng, C., Deepankar Pal, Haijun Gong, Kai Zeng, Kevin Briggs, Nachiket Patil, and Brent Stucker. 2017. “A Review of Defect Modeling in Laser Material Processing.” Additive Manufacturing 14: 137–147. doi: 10.1016/j.addma.2016.10.009
  • Tian, Y., Dacian Tomus, Paul Rometsch, and Xinhua Wu. 2017. “Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting.” Additive Manufacturing 13: 103–112. doi: 10.1016/j.addma.2016.10.010
  • Vanloocke, P. R. 1995. “Qnet-A Quantum-mechanical Neural-network-A New Connectionist Architecture and Its Relevance for Variable Binding and Constraint Satisfaction Problems.” Cybernetica 38 (1): 85–106.
  • Welsch, G., R. Boyer, and E. Collings. 1993. Materials Properties Handbook: Titanium Alloys. ASM international.
  • Yadroitsev, I., P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov. 2013. “Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track from Metallic Powder.” Journal of Materials Processing Technology 213 (4): 606–613. doi: 10.1016/j.jmatprotec.2012.11.014
  • Yadroitsev, I., and I. Yadroitsava. 2015. “Evaluation of Residual Stress in Stainless Steel 316L and Ti6Al4 V Samples Produced by Selective Laser Melting.” Virtual and Physical Prototyping 10 (2): 67–76. doi: 10.1080/17452759.2015.1026045
  • Yasa, E., Jan Deckers, Jean-Pierre Kruth, Marleen Rombouts, and Jan Luyten. 2010. “Charpy Impact Testing of Metallic Selective Laser Melting Parts.” Virtual and Physical Prototyping 5 (2): 89–98. doi: 10.1080/17452751003703894