2,150
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Monitoring of functionally graded material during laser directed energy deposition by acoustic emission and optical emission spectroscopy using artificial intelligence

ORCID Icon, , , ORCID Icon, & ORCID Icon
Article: e2189599 | Received 14 Oct 2022, Accepted 02 Mar 2023, Published online: 22 Mar 2023

References

  • Arias-González, F., O. Barro, J. del Val, F. Lusquiños, M. Fernández-Arias, R. Comesaña, A. Riveiro, and J. Pou. 2021. “Chapter 4 – Laser-Directed Energy Deposition: Principles and Applications.” In Additive Manufacturing Handbooks in Advanced Manufacturing, 121–157. doi:10.1016/B978-0-12-818411-0.00003-3.
  • Azencott, C.-A. 2022. Introduction au Machine Learning. 2nd ed. Malakoff: Dunod. ISBN 978-2-10-083476-1.
  • Bandyopadhyay, A., and B. Heer. 2018. “Additive Manufacturing of Multi-Material Structures.” Materials Science and Engineering: R: Reports 129: 1–6. doi:10.1016/j.mser.2018.04.001.
  • Bäuerle, D. 2011. Laser Processing and Chemistry. Berlin: Springer. doi:10.1007/978-3-642-17613-5.
  • Bi, G., A. Gasser, K. Wissenbach, A. Drenker, and R. Poprawe. 2006a. “Investigation on the Direct Laser Metallic Powder Deposition Process via Temperature Measurement.” Applied Surface Science 253 (3): 1411–1416. doi:10.1016/j.apsusc.2006.02.025.
  • Bi, G., A. Gasser, K. Wissenbach, A. Drenker, and R. Poprawe. 2006b. “Identification and Qualification of Temperature Signal for Monitoring and Control in Laser Cladding.” Optics and Lasers in Engineering 44 (12): 1348–1359. doi:10.1016/j.optlaseng.2006.01.009.
  • Blakey-Milner, B., P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, and A. du Plessis. 2021. “Metal Additive Manufacturing in Aerospace: A Review.” Materials & Design 209: 10008. doi:10.1016/j.matdes.2021.110008.
  • Coeck, S., M. Bisht, J. Plas, and F. Verbist. 2019. “Prediction of Lack of Fusion Porosity in Selective Laser Melting Based on Melt Pool Monitoring Data.” Additive Manufacturing 25: 347–356. doi:10.1016/j.addma.2018.11.015.
  • Cui, D., B. Lanfant, M. Leparoux, and S. Favre. 2021. “Additive Manufacturing of Ti-Nb Dissimilar Metals by Laser Metal Deposition.” In Industrializing Additive Manufacturing (AMPA 2020), edited by M. Meboldt and C. Klahn, 96–111. Cham: Springer. doi:10.1007/978-3-030-54334-1_8.
  • Culmone, C., G. Smit, and P. Breedveld. 2019. “Additive Manufacturing of Medical Instruments: A State-of-the-Art Review.” Additive Manufacturing 27: 461–473. doi:10.1016/j.addma.2019.03.015.
  • Deshpande, P., V. Pandiyan, B. Meylan, and K. Wasmer. 2021. “Acoustic Emission and Machine Learning Based Classification of Wear Generated Using a Pin-on-Disc Tribometer Equipped with a Digital Holographic Microscope.” Wear 476: 203622. doi:10.1016/j.wear.2021.203622.
  • Ding, Y., J. Warton, and R. Kovacevic. 2016. “Development of Sensing and Control System for Robotized Laser-Based Direct Metal Addition System.” Additive Manufacturing 10: 24–35. doi:10.1016/j.addma.2016.01.002.
  • Dowling, L., J. Kennedy, S. O’Shaughnessy, and D. Trimble. 2020. “A Review of Critical Repeatability and Reproducibility Issues in Powder Bed Fusion.” Materials & Design 186: 108346. doi:10.1016/j.matdes.2019.108346.
  • Drissi-Daoudi, R., V. Pandiyan, R. Logé, S. A. Shevchik, G. Masinelli, H. Ghasemi-Tabasi, A. Parrilli, and K. Wasmer. 2022. “Differentiation of Materials and Laser Powder Bed Fusion Processing Regimes from Airborne Acoustic Emission Combined with Machine Learning.” Virtual and Physical Prototyping 17 (2): 181–204. doi:10.1080/17452759.2022.2028380.
  • Everton, S. K., M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare. 2016. “Review of in-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing.” Materials & Design 95: 431–445. doi:10.1016/j.matdes.2016.01.099.
  • Farzaneh, A., M. Khorasani, E. Farabi, I. Gibson, M. Leary, A. H. Ghasemi, and B. Rolfe. 2022. “Sandwich Structure Printing of Ti-Ni-Ti by Directed Energy Deposition.” Virtual and Physical Prototyping 17 (4): 1006–1030. doi:10.1080/17452759.2022.2096647.
  • Ferreira, E., M. Dal, C. Colin, G. Marion, C. Gorny, D. Courapied, J. Guy, and P. Peyre. 2020. “Experimental and Numerical Analysis of Gas/Powder Flow for Different LMD Nozzles.” Metals 10 (5): 667. doi:10.3390/met10050667.
  • Frazier, W. E. 2014. “Metal Additive Manufacturing: A Review.” Journal of Materials Engineering and Performance 23: 1917–1928. doi:10.1007/s11665-014-0958-z.
  • Gaja, H., and F. Liou. 2018. “Defect Classification of Laser Metal Deposition Using Logistic Regression and Artificial Neural Networks for Pattern Recognition.” The International Journal of Advanced Manufacturing Technology 94 (1): 315–326. doi:10.1007/s00170-017-0878-9.
  • Gharbi, M., P. Peyre, C. Gorny, M. Carin, S. Morville, P. Le Masson, D. Carron, and R. Fabbro. 2013. “Influence of Various Process Conditions on Surface Finishes Induced by the Direct Metal Deposition Laser Technique on a Ti–6Al–4V Alloy.” Journal of Materials Processing Technology 213 (5): 791–800. doi:10.1016/j.jmatprotec.2012.11.015.
  • Goh, G. D., S. L. Sing, and W. Y. Yeong. 2021. “A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges.” Artificial Intelligence Review 54: 63–94. doi:10.1007/s10462-020-09876-9.
  • Gong, H., K. Rafi, H. Gu, T. Starr, and B. Stucker. 2014. “Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes.” Additive Manufacturing 1-4: 87–98. doi:10.1016/j.addma.2014.08.002.
  • Groden, C., V. Champagne, S. Bose, and A. Bandyopadhyay. 2022. “Inconel 718-CoCrMo Bimetallic Structures Through Directed Energy Deposition-Based Additive Manufacturing.” Materials Science in Additive Manufacturing 1 (3): 18. doi:10.18063/msam.v1i3.18.
  • Guo, N., and M. Leu. 2013. “Additive Manufacturing: Technology, Applications and Research Needs.” Frontiers of Mechanical Engineering 8 (3): 215–243. doi:10.1007/s11465-013-0248-8.
  • Haley, J. C., J. M. Schoenung, and E. J. Lavernia. 2018. Observations of Particle-Melt Pool Impact Events in Directed Energy Deposition.” Additive Manufacturing 22: 368–374. doi:10.1016/j.addma.2018.04.028.
  • Han, D., and H. Lee. 2020. “Recent Advances in Multi-Material Additive Manufacturing: Methods and Applications.” Current Opinion in Chemical Biology 28: 158–166. doi:10.1016/j.coche.2020.03.004.
  • Hasanov, S., S. Alkunte, M. Rajeshirke, A. Gupta, O. Huseynov, I. Fidan, F. Alifui-Segbaya, and A. Rennie. 2021. “Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges.” Journal of Manufacturing and Materials Processing 6 (1): 1–31. doi:10.3390/jmmp6010004.
  • Hauser, T., R. T. Reisch, T. Kamps, A. F. Kaplan, and J. Volpp. 2022. “Acoustic Emissions in Directed Energy Deposition Processes.” The International Journal of Advanced Manufacturing Technology 119 (5): 3517–3532. doi:10.1007/s00170-021-08598-8.
  • Jerri, A. J. 1977. “The Shannon Sampling Theorem – Its Various Extensions and Applications: A Tutorial Review.” Proceedings of the IEEE 65 (11): 1565–1596. doi:10.1109/PROC.1977.10771.
  • Khanzadeh, M., W. Tian, A. Yadollahi, H. R. Doude, M. A. Tschopp, and L. Bian. 2018. “Dual Process Monitoring of Metal-Based Additive Manufacturing Using Tensor Decomposition of Thermal Image Streams.” Additive Manufacturing 23: 443–456. doi:10.1016/j.addma.2018.08.014.
  • Koester, L. W., H. Taheri, T. A. Bigelow, L. J. Bond, and E. J. Faierson. 2018. “In-Situ Acoustic Signature Monitoring in Additive Manufacturing Processes.” AIP Conference Proceedings 1949: 020006. doi:10.1063/1.5031503.
  • Masinelli, G., R. Wrobel, V. Pandiyan, and K. Wasmer. 2022. “Multimodal Signal Segmentation Technique Based on Morphological Operators Applied on Synchronized Optical Data for Laser Powder Bed Fusion Processes.” Procedia CIRP 111: 838–843. doi:10.1016/j.procir.2022.08.094.
  • Meola, C., S. Boccardi, and G. M. Carlomagno. 2017. “Chapter 3: Infrared Thermography Basics.” In Infrared Thermography in the Evaluation of Aerospace Composite Materials, edited by C. Meola, S. Boccardi, and G. M. Carlomagno, 57–83. Woodhead Publishing. doi:10.1016/B978-1-78242-171-9.00003-6.
  • Najmon, J. C., S. Raeisi, and A. Tovar. 2019. “Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry.” Additive Manufacturing for the Aerospace Industry, 7–31. doi:10.1016/B978-0-12-814062-8.00002-9.
  • Ngo, T. D., A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui. 2018. “Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges.” Composites Part B: Engineering 143: 172–196. doi:10.1016/j.compositesb.2018.02.012.
  • Pandiyan, V., D. Cui, T. Le-Quang, P. Deshpande, K. Wasmer, and S. A. Shevchik. 2022. “In Situ Quality Monitoring in Direct Energy Deposition Process Using Co-Axial Process Zone Imaging and Deep Contrastive Learning.” Journal of Manufacturing Processes 81: 1064–1075. doi:10.1016/j.jmapro.2022.07.033.
  • Pandiyan, V., R. Drissi-Daoudi, S. A. Shevchik, G. Masinelli, R. Logé, and K. Wasmer. 2020. “Analysis of Time, Frequency and Time-Frequency Domain Features from Acoustic Emissions During Laser Powder-Bed Fusion Process.” Procedia CIRP 94: 392–397. doi:10.1016/j.procir.2020.09.152.
  • Pandiyan, V., R. Drissi-Daoudi, S. A. Shevchik, G. Masinelli, T. Quang-Le, R. Logé, and K. Wasmer. 2021. “Semi-Supervised Monitoring of Laser Powder Bed Fusion Process Based on Acoustic Emissions.” Virtual and Physical Prototyping 16 (4): 481–497. doi:10.1080/17452759.2021.1966166.
  • Pandiyan, V., R. Drissi-Daoudi, S. A. Shevchik, G. Masinelli, T. Quang-Le, R. Logé, and K. Wasmer. 2022. “Deep Transfer Learning of Additive Manufacturing Mechanisms Across Materials in Metal-Based Laser Powder Bed Fusion Process.” Journal of Materials Processing Technology 303: 117531. doi:10.1016/j.jmatprotec.2022.117531.
  • Pandiyan, V., G. Masinelli, N. Claire, T. Le-Quang, M. Hamidi-Nasab, C. de Formanoir, R. Esmaeilzadeh, et al. 2022. “Deep Learning-Based Monitoring of Laser Powder Bed Fusion Process on Variable Time-Scales Using Heterogeneous Sensing and Operando X-Ray Radiography Guidance.” Additive Manufacturing 66: 1565–1580. doi:10.1016/j.addma.2022.103007.
  • Parihar, R. S., S. G. Setti, and R. K. Sahu. 2018. “Recent Advances in the Manufacturing Processes of Functionally Graded Materials: A Review.” Science and Engineering of Composite Materials 25 (2): 309–336. doi:10.1515/secm-2015-0395.
  • Rao, J., S. L. Sing, J. C. W. Lim, W. Y. Yeong, J. Yang, Z. Fan, and P. Hazell. 2022. “Detection and Characterisation of Defects in Directed Energy Deposited Multi-Material Components Using Full Waveform Inversion and Reverse Time Migration.” Virtual and Physical Prototyping 17 (4): 1047–1057. doi:10.1080/17452759.2022.2086142.
  • Ren, W., G. Wen, Z. Zhang, and J. Mazumder. 2022. “Quality Monitoring in Additive Manufacturing Using Emission Spectroscopy and Unsupervised Deep Learning.” Materials and Manufacturing Processes 37 (11): 1339–1346. doi:10.1080/10426914.2021.1906891.
  • Salmi, M. 2021. “Additive Manufacturing Processes in Medical Applications.” Materials 14 (1): 191. doi:10.3390/ma14010191.
  • Sampson, R., R. Lancaster, M. Sutcliffe, D. Carswell, C. Hauser, and J. Barras. 2020. “An Improved Methodology of Melt Pool Monitoring of Direct Energy Deposition Processes.” Optics & Laser Technology 27: 106194. doi:10.1016/j.optlastec.2020.106194.
  • Sansonetti, J. E., and W. C. Martin. 2005a. “Handbook of Basic Atomic Spectroscopic Data, National Institute of Standards and Technology (NIST).” Journal of Physical and Chemical Reference Data 34: 1559–2259. Original doi: doi:10.1063/1.1800011. Updated Online Version doi: doi:10.18434/T4FW23.
  • Sansonetti, J. E., and W. C. Martin. 2005b. “Strong Lines of Titanium (Ti).” In Handbook of Basic Atomic Spectroscopic Data. National Institute of Standards and Technology (NIST). Accessed September 30, 2022. https://physics.nist.gov/PhysRefData/Handbook/Tables/titaniumtable2.htm.
  • Sansonetti, J. E., and W. C. Martin. 2005c. “Strong Lines of Niobium (Nb).” In Handbook of Basic Atomic Spectroscopic Data. National Institute of Standards and Technology (NIST). Accessed September 30, 2022. https://physics.nist.gov/PhysRefData/Handbook/Tables/niobiumtable2.htm.
  • Shevchik, S. A., C. Kenel, C. Leinenbach, and K. Wasmer. 2018. “Acoustic Emission for in Situ Quality Monitoring in Additive Manufacturing Using Spectral Convolutional Neural Networks.” Additive Manufacturing 21: 598–604. doi:10.1016/j.addma.2017.11.012.
  • Shevchik, S. A., T. Le-Quang, B. Meylan, F. Vakili-Farahani, M. P. Olbinado, A. Rack, G. Masinelli, C. Leinenbach, and K. Wasmer. 2020. “Supervised Deep Learning for Real-Time Quality Monitoring of Laser Welding with X-Ray Radiographic Guidance.” Scientific Report 10: 3389. doi:10.1038/s41598-020-60294-x.
  • Shevchik, S. A., T. Le-Quang, F. Vakili-Farahani, F. Neige, B. Meylan, S. Zanoli, and K. Wasmer. 2019. “Laser Welding Quality Monitoring via Graph Support Vector Machine with Data Adaptive Kernel.” IEEE Access 7 (1): 93108–93122. doi:10.1109/ACCESS.2019.2927661.
  • Shevchik, S. A., G. Masinelli, C. Kenel, C. Leinenbach, and K. Wasmer. 2019. “Deep Learning for In Situ and Real-Time Quality Monitoring in Additive Manufacturing Using Acoustic Emission.” IEEE Transactions on Industrial Informatics 19 (9): 5194–5203. doi:10.1109/TII.2019.2910524.
  • Shin, J., and J. Mazumder. 2018. “Composition Monitoring Using Plasma Diagnostics During Direct Metal Deposition (DMD) Process.” Optics & Laser Technology 106: 40–46. doi:10.1016/j.optlastec.2018.03.020.
  • Singh, D. D., S. Arjula, and A. R. Reddy. 2021. “Functionally Graded Materials Manufactured by Direct Energy Deposition: A Review.” Materials Today: Proceedings 47 (10): 2450–2456. doi:10.1016/j.matpr.2021.04.536.
  • Song, L., V. Bagavath-Singh, B. Dutta, and J. Mazumder. 2012. “Control of Melt Pool Temperature and Deposition Height During Direct Metal Deposition Process.” The International Journal of Advanced Manufacturing Technology 58 (1): 247–256. doi:10.1007/s00170-011-3395-2.
  • Song, L., W. Huang, X. Han, and J. Mazumder. 2016. “Real-Time Composition Monitoring Using Support Vector Regression of Laser-Induced Plasma for Laser Additive Manufacturing.” IEEE Transactions on Industrial Electronics 64 (1): 633–642. doi:10.1109/TIE.2016.2608318.
  • Song, L., and J. Mazumder. 2012. “Real Time Cr Measurement Using Optical Emission Spectroscopy During Direct Metal Deposition Process.” IEEE Sensors Journal 12 (5): 958–964. doi:10.1109/JSEN.2011.2162316.
  • Stutzman, C. B., A. R. Nassar, and E. W. Reutzel. 2018. “Multi-Sensor Investigations of Optical Emissions and Their Relations to Directed Energy Deposition Processes and Quality.” Additive Manufacturing 21: 333–339. doi:10.1016/j.addma.2018.03.017.
  • Tang, Z.-J., W.-W. Liu, Y.-W. Wang, K. M. Saleheen, Z.-C. Liu, S.-T. Peng, Z. Zhang, and H.-C. Zhang. 2020. “A Review on In Situ Monitoring Technology for Directed Energy Deposition of Metals.” The International Journal of Advanced Manufacturing Technology 108: 3437–3463. doi:10.1007/s00170-020-05569-3.
  • Tapia, G., and A. Elwany. 2014. “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing.” Journal of Manufacturing Science and Engineering 136 (6): 060801. doi:10.1115/1.4028540.
  • Tempelman, J. R., A. J. Wachtor, E. B. Flynn, P. J. Depond, J.-B. Forien, G. M. Guss, N. P. Calta, and M. J. Matthews. 2022. “Detection of Keyhole Pore Formations in Laser Powder-Bed Fusion Using Acoustic Process Monitoring Measurements.” Additive Manufacturing 55: 102735. doi:10.1016/j.addma.2022.102735.
  • Thompson, S. M., L. Bian, N. Shamsaei, and A. Yadollahi. 2015. “An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics.” Additive Manufacturing 8: 36–62. doi:10.1016/j.addma.2015.07.001.
  • Vykhtara, B., and A. M. Richtera. 2021. “Optical Monitoring Sensor System for Laser-Based Directed Energy Deposition.” In Lasers in Manufacturing Conference 2021 (LiM2021), Munich, Germany, 20–24 June, 2021. Accessed September 29, 2022. https://wlt.de/sites/default/files/2021-10/directed_energy_deposition/Contribution_227_final.pdf.
  • Weiss, L., Y. Nessler, M. Novelli, P. Laheurte, and T. Grosdidier. 2019. “On the Use of Functionally Graded Materials to Differentiate the Effects of Surface Severe Plastic Deformation, Roughness and Chemical Composition on Cell Proliferation.” Metals 9 (12): 1344. doi:10.3390/met9121344.
  • Whiting, J., A. Springer, and F. Sciammarella. 2018. “Real-Time Acoustic Emission Monitoring of Powder Mass Flow Rate for Directed Energy Deposition.” Additive Manufacturing 23: 312–318. doi:10.1016/j.addma.2018.08.015.
  • Yan, L., Y. Chen, and F. Liou. 2020. “Additive Manufacturing of Functionally Graded Metallic Materials Using Laser Metal Deposition.” Additive Manufacturing 31: 100901. doi:10.1016/j.addma.2019.100901.
  • Zhang, C., F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, et al. 2019. “Additive Manufacturing of Functionally Graded Materials: A Review.” Materials Science and Engineering: A 764: 138209. doi:10.1016/j.msea.2019.138209.
  • Zhang, B., Y. Li, and Q. Bai. 2017. “Defect Formation Mechanisms in Selective Laser Melting: A Review.” Chinese Journal of Mechanical Engineering 30 (3): 515–527. doi:10.1007/s10033-017-0121-5.