2,454
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Advances in precision microfabrication through digital light processing: system development, material and applications

, , , , , & show all
Article: e2248101 | Received 30 May 2023, Accepted 07 Aug 2023, Published online: 24 Aug 2023

References

  • Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121–6130. doi:10.1016/j.biomaterials.2010.04.050
  • Ge Q, Li Z, Wang Z, et al.. Projection micro stereolithography based 3D printing and its applications. Int J Extreme Manuf. 2020;2:2. doi:10.1088/2631-7990/ab8d9a
  • Quan H, Zhang T, Xu H, et al. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110–115. doi:10.1016/j.bioactmat.2019.12.003
  • Zheng X, Deotte J, Alonso MP, et al.. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev Sci Instrum. 2012a;12:125001. doi:10.1063/1.4769050
  • Lee K-S, Kim RH, Yang D-Y, et al. Advances in 3D nano/microfabrication using two-photon initiated polymerization. Progr Polymer Sci. 2008;33(6):631–681. doi:10.1016/j.progpolymsci.2008.01.001
  • Darkes-Burkey C, Shepherd RF. High-resolution 3D printing in seconds. Nature. 2020;588(7839):594–95. doi:10.1038/d41586-020-03543-3.
  • Hull C. F. P. m. p.-p. (resin)-SLA, 1986.
  • Hornbeck, L. J. (29 Oct. 1991). U. S. Patent.
  • Bertsch A. Microstereophotolithography using a liquid crystal display as dynamic mask-generator.pdf. Microsyst Technol. 1997;3(2):42–47. doi:10.1007/s005420050053.
  • Beluze L. Microstereolithography a new process to build complex 3D objects, 1999.
  • Shoji Maruo KIaTN. Multi-polymer microstereolithography for hybrid opto-MEMS.pdf. IEEE, 2001.
  • G W. Digital micromirror device based microstereolithography for micro structures of transparent photopolymer and nanocomposites, 2003.
  • Wicker AIR. Development of an automated multiple material stereolithography machine. 2006.
  •  Sun C, Fang N, Wu DM, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuat A Phys 2005; 1:113–120. doi:10.1016/j.sna.2004.12.011.
  •  Choi W,R. Multi-material microstereolithography. Int J Adv Manuf Technol. 2009;5-8:543–551. doi:10.1007/s00170-009-2434-8.
  • Wicker R. Multi-material stereolithography. J Mater Process Technol. 2011;3:318–328. doi:10.1016/j.jmatprotec.2010.10.003
  • B9Creations. https://tracxn.com/d/companies/b9creations/__iNXQYOQtobKhLI1S10wagHhhGRNuLFKdCrM-Y_O1fds, 2012.
  • Zhou C, Chen Y, Yang Z, et al. Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyping J. 2013;3:153–165. doi:10.1108/13552541311312148
  • Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett. 2013;103:13. doi:10.1063/1.4819837
  •  Zheng X, Lee H, Weisgraber TH, et al. Ultralight: ultrastiff mechanical metamaterials. Science. 2014;6190:1373–1377. doi:10.1126/science.1252291.
  • Janusziewicz R, Tumbleston JR, Quintanilla AL, et al. Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci USA. 2016;113(42):11703–11708. doi:10.1073/pnas.1605271113
  • Tumbleston JR. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349–52. doi: 10.1126/science.aaa2397.
  • Shusteff M, et al. One-step volumetric additive manufacturing of complex polymer structures. Sci Adv. 2017;3(12). doi:10.1126/sciadv.aao5496.
  • Kowsari K, Akbari S, Wang D, et al. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Print Add Manuf . 2018a;3:185–193. doi:10.1089/3dp.2018.0004
  • Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater. 2018;27:e1800242. doi:10.1002/adma.201800242
  • Kelly BE, et al. Volumetric additive manufacturing via tomographic reconstruction. Science. 2019;363(6431):1075–1079. doi:10.1126/science.aau7114.
  • Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater. 2019;31(42):e1904209. doi:10.1002/adma.201904209
  • Walker DA, Hedrick JL, Mirkin CA. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science. 2019;366(6463):360–364. doi:10.1126/science.aax1562.
  • Kang M, Han C, Jeon H. Submicrometer-scale pattern generation via maskless digital photolithography. Optica. 2020;7:12. doi:10.1364/optica.406304
  • Fabrication BM. (S140). https://bmf3d.com/10%ce%bcm-series-printers/.
  •  Li Y, Mao Q, Li X, et al. High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Addit Manufac. 2019. doi:10.1016/j.addma.2019.100889.
  • Renap K, K JP. Recoating issues in stereolithography. Rapid Prototyp J. 1995;1(3):4–16. doi:10.1108/13552549510094223.
  • Kozhevnikov A, Kunnen RPJ, van Baars GE, et al. Investigation of the fluid flow during the recoating process in additive manufacturing. Rapid Prototyp J. 2019;26(4):605–613. doi:10.1108/rpj-06-2019-0152
  • Santoliquido O, Colombo P, Ortona A. Additive manufacturing of ceramic components by digital light processing: a comparison between the “bottom-up” and the “top-down” approaches. J Eur Ceram Soc. 2019;39(6):2140–2148. doi:10.1016/j.jeurceramsoc.2019.01.044
  • Kunwar P, Xiong Z, McLoughlin ST, et al. Oxygen-permeable films for continuous additive, subtractive, and hybrid additive/subtractive manufacturing. 3D Print Addit Manuf. 2020;5:216–221. doi:10.1089/3dp.2019.0166
  • Chockalingam K, Jawahar N, Ramanathan KN, et al. Optimization of stereolithography process parameters for part strength using design of experiments. Int J Adv Manufac Technol. 2005;29(1–2):79–88. doi:10.1007/s00170-004-2307-0
  • Verhaagen B, Zanderink T, Fernandez Rivas D. Ultrasonic cleaning of 3D printed objects and cleaning challenge devices. Appl Acoust. 2016;103:172–181. doi:10.1016/j.apacoust.2015.06.010
  • Aznarte, E., C. Ayranci, and A. J. Qureshi. (2017). Digital light processing (DLP) anisotropic tensile considerations. 2017 International solid freeform fabrication symposium.
  • Sun W-S, Chiang Y-C, Tsuei C-H. Optical design for the DLP pocket projector using LED light source. Phys Proc. 2011;19:301–307. doi:10.1016/j.phpro.2011.06.165
  • Gu Z, Fu J, Lin H, et al. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. 2020;5:529–557. doi:10.1016/j.ajps.2019.11.003
  • Wang Y, Xue D, Mei D. Projection-based continuous 3D printing process With the grayscale display method. J Manufac Sci Eng. 2020;142:2. doi:10.1115/1.4045616
  • Xu H, Davey AB, Wilkinson TD, et al. Performance of UV-stable STN mixtures for PL-LCDs. Mol Cryst Liquid Cryst. 2004;411(1):79–91. doi:10.1080/15421400490434810
  • Pyo SH, Wang P, Hwang HH, et al. Continuous optical 3D printing of green aliphatic polyurethanes. ACS Appl Mater Interfaces. 2017;9(1):836–844. doi:10.1021/acsami.6b12500
  • Jiang C, Zhang H, Song J, et al. Digital micromirror device (DMD)-based high-cycle tensile fatigue testing of 1D nanomaterials. Extreme Mech Lett. 2018;18:79–85. doi:10.1016/j.eml.2017.11.005
  • Pan J-W, Lin S-H. Achromatic design in the illumination system for a mini projector with LED light source. Optics Express. 2011;19(17):15750–15759. doi:10.1364/oe.19.015750.
  • Sun WS, Pan JW. Non-telecentric projection lens design for an LED projector. Appl Opt. 2017;56(3):712–720. doi:10.1364/AO.56.000712
  • Liravi F, Das S, Zhou C. Separation force analysis and prediction based on cohesive element model for constrained-surface stereolithography processes. Comput Aid Design. 2015;69:134–142. doi:10.1016/j.cad.2015.05.002
  •  Nosonovsky M, Bhushan B. Lotus versus rose: biomimetic surface effects. In: Green Tribology; 2012. p. 25–40.
  • Kowsari K, Zhang B, Panjwani S, et al. Photopolymer formulation to minimize feature size: surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Addit Manufac. 2018b;24:627–638. doi:10.1016/j.addma.2018.10.037
  • Pan Y, Zhao X, Zhou C, et al. Smooth surface fabrication in mask projection based stereolithography. J Manufac Process. 2012;14(4):460–470. doi:10.1016/j.jmapro.2012.09.003
  • Yeung C, Chen S, King B, et al. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 2019;13(6):064125. doi:10.1063/1.5127778
  •  Dendukuri D, Pregibon DC, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater. 2006;5:365–369. doi:10.1038/nmat1617.
  • Pan Y, Zhou C, Chen Y. A fast mask projection stereolithography process for fabricating digital models in minutes. J Manufac Sci Eng. 2012;134:5. doi:10.1115/1.4007465
  • Wu X, Lian Q, Li D, et al. Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model. J Mater Process Technol. 2017;243:184–196. doi:10.1016/j.jmatprotec.2016.12.016
  • Ribo MM, et al. Optimization of a self-peeling vat for precision vat photopolymerization setups. Eur Soc Precision Eng Nanotechnol. 2019.
  • Andersen, F. W. (2018). Optimization of an experimental DLP platform by construction and process studies tech. Technical University of Denmark, Kgs. Lyngby, Denmark.
  • Jacobs PF. (1992). Rapid Prototyping Manufacturing Fundamentals of StereoLithography by Jacobs P.F. (z-lib.org).
  • Gong H, Beauchamp M, Perry S, et al. Optical approach to resin formulation for 3D printed microfluidics. RSC Adv. 2015;129:106621–106632. doi:10.1039/C5RA23855B
  • Benjamin AD, Abbasi R, Owens M, et al. Light-based 3D printing of hydrogels with high-resolution channels. Biomed Phys Eng Expr. 2019;5:2. doi:10.1088/2057-1976/aad667
  • Swineharf, D. F. (1962). Beer-Lambert Law.doi:10.1021/ed039p333
  • Lee JH, Prud'homme RK, Aksay IA. Cure depth in photopolymerization: experiments and theory. J Mater Res. 2011;12:3536–3544. doi:10.1557/jmr.2001.0485
  • Bennett J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit Manuf. 2017: 203–212. doi:10.1016/j.addma.2017.10.009
  • Emami MM, Barazandeh F, Yaghmaie F. Scanning-projection based stereolithography: method and structure. Sensors Actuat A Phys. 2014;218:116–124. doi:10.1016/j.sna.2014.08.002
  •  Zhakeyev A, Zhang L, Xuan J. Photoactive resin formulations and composites for optical 3D and 4D printing of functional materials and devices. In: 3D and 4D printing of polymer nanocomposite materials, Vol. The matematic model basic of my first time. 2020. p. 387–425.
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;15:10212–10290. doi:10.1021/acs.chemrev.7b00074
  • Carbon. (2023). https://www.carbon3d.com/about.
  • Odian, G. (2004). Principles of polymerization. John Wiley & Sons. doi:10.1002/047147875x
  • Wu J, Zhao Z, Hamel CM, et al. Evolution of material properties during free radical photopolymerization. J Mech Phys Solids. 2018;112:25–49. doi:10.1016/j.jmps.2017.11.018
  • Shaukat, U., Rossegger, E., & Schlogl, S. (2022). A review of multi-material 3D printing of functional materials via vat photopolymerization. Polymers (Basel), 14(12). doi:10.3390/polym14122449
  • Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization: features,: developments, and perspectives. Progr Polymer Sci. 2007;32(1):93–146. doi:10.1016/j.progpolymsci.2006.11.002
  • Chen M, Zhong M, Johnson JA. Light-controlled radical polymerization: mechanisms,: methods, and applications. Chem Rev. 2016;116(17):10167–10211. doi:10.1021/acs.chemrev.5b00671
  • Mota C, Camarero-Espinosa S, Baker MB, et al. Bioprinting: from tissue and organ development to in vitro models. Chem Rev. 2020;19:10547–10607. doi:10.1021/acs.chemrev.9b00789
  • Ba´rtolo, P. J. Stereolithography: materials,: processes and ApplicationsStereolithography. MaterProc Appl. 2011:1–36. doi:10.1007/978-0-387-92904-0_1.
  • Tang, Y. Stereolithography cure process modeling, Georgia Institute of Technology.pdf, 2005.
  • Zhang J, Xiao P. 3D printing of photopolymers. Polymer Chem. 2018;9(13):1530–1540. doi:10.1039/c8py00157j
  • Brandon V. Slaughter SSK, Fisher OZ, Khademhosseini A, et al. Hydrogels in regenerative medicine. Adv Mater. 2009: 32–33.
  • Liu Tsang V, Chen AA, Cho LM, et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 2007;21(3):790–801. doi:10.1096/fj.06-7117com
  • Yanan Du EL, Ali S, Khademhosseini A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. National Acad Sci. 2008;105(28):9522–27. doi:10.1073/pnas.0801866105.
  • Gou M, Qu X, Zhu W, et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun. 2014;5:3774. doi:10.1038/ncomms4774
  • Liu S, Yeo DC, Wiraja C, et al. Peptide delivery with poly(ethylene glycol) diacrylate microneedles through swelling effect. Bioeng Transl Med. 2017;2(3):258–267. doi:10.1002/btm2.10070
  • Munoz-Pinto DJ, Jimenez-Vergara AC, Gharat TP, et al. Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering. Biomaterials. 2015;40:32–42. doi:10.1016/j.biomaterials.2014.10.051
  • Nichol JW, Koshy ST, Bae H, et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536–5544. doi:10.1016/j.biomaterials.2010.03.064
  • Van Den Bulcke AI, et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000;1:31–38.
  • Ahadian S, Ramon-Azcon J, Estili M, et al. Facile and rapid generation of 3D chemical gradients within hydrogels for high-throughput drug screening applications. Biosens Bioelectron. 2014;59:166–173. doi:10.1016/j.bios.2014.03.031
  • Ahadian S, Yamada S, Ramon-Azcon J, et al. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater. 2016;31:134–143. doi:10.1016/j.actbio.2015.11.047
  • Athirasala A, Lins F, Tahayeri A, et al. A novel strategy to engineer Pre-vascularized full-length dental pulp-like tissue constructs. Sci Rep. 2017;7(1):3323. doi:10.1038/s41598-017-02532-3
  • Jeon O, Wolfson DW, Alsberg E. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate. Adv Mater. 2015;27(13):2216–2223. doi:10.1002/adma.201405337
  • Levato R, Webb WR, Otto IA, et al. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater. 2017;61:41–53. doi:10.1016/j.actbio.2017.08.005
  • Paul A, Manoharan V, Krafft D, et al. Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B. 2016;4(20):3544–3554. doi:10.1039/C5TB02745D
  • Sadeghi AH, Shin SR, Deddens JC, et al. Engineered 3D cardiac fibrotic tissue to study fibrotic remodeling. Adv Healthc Mater. 2017;6:11. doi:10.1002/adhm.201601434
  • Shin SR, Zihlmann C, Akbari M, et al. Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small. 2016;12(27):3677–3689. doi:10.1002/smll.201600178
  • Wenz A, Borchers K, Tovar GEM, et al. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication. 2017;9(4):044103. doi:10.1088/1758-5090/aa91ec
  • Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271. doi:10.1016/j.biomaterials.2015.08.045
  • Zhang YS, Davoudi F, Walch P, et al. Bioprinted thrombosis-on-a-chip. Lab Chip. 2016;16(21):4097–4105. doi:10.1039/c6lc00380j
  • Wu S, Xu R, Duan B, et al. Three-dimensional hyaluronic acid hydrogel-based models for In vitro human iPSC-derived NPC culture and differentiation. J Mater Chem B. 2017;5(21):3870–3878. doi:10.1039/C7TB00721C
  • Lin S, Lee WYW, Feng Q, et al. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Res Ther. 2017;8(1):221. doi:10.1186/s13287-017-0672-5
  • Poldervaart MT, Goversen B, de Ruijter M, et al. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS One. 2017;12(6):e0177628. doi:10.1371/journal.pone.0177628
  • Rossegger E, Höller R, Hrbinič K, et al. 3D printing of soft magnetoactive devices with thiol-click photopolymer composites. Adv Eng Mater. 2022;25:7. doi:10.1002/adem.202200749
  • Cazin I, Rossegger E, Roppolo I, et al. Digital light processing 3D printing of dynamic magneto-responsive thiol-acrylate composites. RSC Adv. 2023;13(26):17536–17544. doi:10.1039/d3ra02504g
  • Lantean S, Roppolo I, Sangermano M, et al. Magnetoresponsive devices with programmable behavior using a customized commercial stereolithographic 3D printer. Adv Mater Technol. 2022;7:11. doi:10.1002/admt.202200288
  • Fantino E, Chiappone A, Roppolo I, et al. 3D printing of conductive complex structures with in situ generation of silver nanoparticles. Adv Mater. 2016;28(19):3712–3717. doi:10.1002/adma.201505109
  • Gonzalez G, Chiappone A, Roppolo I, et al. Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer. 2017;109:246–253. doi:10.1016/j.polymer.2016.12.051
  • Salas A, Pazniak H, Gonzalez-Julian J, et al. Development of polymeric/MXenes composites towards 3D printable electronics. Composites B Eng. 2023;263. doi:10.1016/j.compositesb.2023.110854
  • Gastaldi M, Roppolo I, Chiappone A, et al. Thermochromic photoluminescent 3D printed polymeric devices based on copper-iodide clusters. Addit Manufac. 2022;49. doi:10.1016/j.addma.2021.102504
  •  Chabok H ZC, Chen Y, Eskandarinazhad A, et al. Ultrasound transducer array fabrication based on additive manufacturing of piezocomposites. Int Symp Flexible Autom. 2012;45110:433–444.
  • H JW. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Ann Rev Mater Res. 2016;46:19–40.
  • Layani M, Wang X, Magdassi S. Novel materials for 3D printing by photopolymerization. Adv Mater. 2018;30(41):e1706344. doi:10.1002/adma.201706344
  • Diesendruck CE, Sottos NR, Moore JS, et al. Biomimetic self-healing. Angew Chem Int Ed Engl. 2015;54(36):10428–10447. doi:10.1002/anie.201500484
  • Sardon H, Dove AP. Plastics recycling with a difference. Science. 2018;360:380–381.
  •  Zhu G, Houck HA, Spiegel CA, et al. Introducing dynamic bonds in light-based 3D printing. Adv Funct Mater. 2023. doi:10.1002/adfm.202300456.
  • Li X, Yu R, He Y, et al. Four-dimensional printing of shape memory polyurethanes with high strength and recyclability based on diels-alder chemistry. Polymer. 2020;200. doi:10.1016/j.polymer.2020.122532
  • Song Y, Liu Y, Qi T, et al. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew Chem Int Ed Engl. 2018;57(42):13838–13842. doi:10.1002/anie.201807622
  • Zhou X, Guo B, Zhang L, et al. Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chem Soc Rev. 2017;46(20):6301–6329. doi:10.1039/c7cs00276a
  • Zhu G, Hou Y, Xiang J, et al. Digital light processing 3D printing of healable and recyclable polymers with tailorable mechanical properties. ACS Appl Mater Interfaces. 2021;13(29):34954–34961. doi:10.1021/acsami.1c08872
  • Binyamin I, Grossman E, Gorodnitsky M, et al. 3D printing thermally stable high-performance polymers based on a dual curing mechanism. Adv Funct Mater. 2023;33:24. doi:10.1002/adfm.202214368
  • Bobrin VA, Yao Y, Shi X, et al. Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation. Nat Commun. 2022;13(1):3577. doi:10.1038/s41467-022-31095-9
  • Patel DK, Sakhaei AH, Layani M, et al. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater. 2017;29:15. doi:10.1002/adma.201606000
  • Cafiso D, Septevani AA, Noè C, et al. 3D printing of fully cellulose-based hydrogels by digital light processing. Sustain Mater Technol. 2022;32. doi:10.1016/j.susmat.2022.e00444
  • Caprioli M, Roppolo I, Chiappone A, et al. 3D-printed self-healing hydrogels via digital light processing. Nat Commun. 2021;12(1):2462. doi:10.1038/s41467-021-22802-z
  • EwaAndrzejewska. Photopolymerization kinetics of multifunctional monomers. Progr Polymer Sci. 2001;26(4):605–665. doi:10.1016/s0079-6700(01)00004-1.
  • Crivello JV. The discovery and development of onium salt cationic photoinitiators. J Polymer Sci A Polymer Chem. 1999;37:4241–4254.
  • Green WA. (2010). Industrial photoinitiators: a technical guide.
  • Kaur M, Srivastava AK. Photopolymerization: a review. J Macromol Sci. 2002;42(4):481–512. doi:10.1081/mc-120015988
  •  Malik MS, Schlogl S, Wolfahrt M, et al. Review on UV-induced cationic frontal polymerization of epoxy monomers. Polymers (Basel). 2020;12:9. doi:10.3390/polym12092146.
  • Sangermano M, Razza N, Crivello JV. Cationic UV-curing: technology and applications. Macromol Mater Eng. 2014;299(7):775–793. doi:10.1002/mame.201300349
  • Green W. Green, W. A. Industrial Photoinitiators A Technical Guide; CRC.pdf, 2010.
  • Fairbanks BD, Schwartz MP, Bowman CN, et al. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials. 2009;30(35):6702–6707. doi:10.1016/j.biomaterials.2009.08.055
  • KT Nguyen JW. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23(22):4307–14. doi:10.1016/s0142-9612(02)00175-8.
  • Arsu N, et al. One component thioxanthone based type II photoinitiators. Photochem UV Curing. 2006: 17–29.
  • Zhang Y, Xu Y, Simon-Masseron A, et al. Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chem Soc Rev. 2021;50(6):3824–3841. doi:10.1039/d0cs01411g
  • Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed. 2000;11(5):439–457. doi:10.1163/156856200743805
  • Williams CG, Malik AN, Kim TK, et al. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26(11):1211–1218. doi:10.1016/j.biomaterials.2004.04.024
  • Park S, Kim D, Ko SY, et al. Controlling uniformity of photopolymerized microscopic hydrogels. Lab Chip. 2014;14(9):1551–1563. doi:10.1039/c4lc00158c
  •  Pawar AA, et al. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Science Adv. 2016;2(4):e1501381.
  •  Huang X, Wang X, Zhao Y. Study on a series of water-soluble photoinitiators for fabrication of 3D hydrogels by two-photon polymerization. X. 2017;141:413–419. doi:10.1016/j.dyepig.2017.02.040.
  • JR Choi KY, Choi JY, Cowie AC. Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques. 2019;66(1):40–53. doi:10.2144/btn-2018-0083.
  • Lin H, Zhang D, Alexander PG, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 2013;34(2):331–339. doi:10.1016/j.biomaterials.2012.09.048
  • Wang Z, Kumar H, Tian Z, et al. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces. 2018;10(32):26859–26869. doi:10.1021/acsami.8b06607
  • Kowsari K, Lee W, Yoo SS, et al. Scalable visible light 3D printing and bioprinting using an organic light-emitting diode microdisplay. iScience. 2021;24(11):103372. doi:10.1016/j.isci.2021.103372
  •  Zaborniak I CP. Ultrasound transducer array fabrication based on additive manufacturing of piezocomposites. Eur Polymer J. 2021;142:110152.
  •  Odent J, Wallin TJ, Pan W, et al. Highly elastic, transparent, and conductive 3D-printed ionic composite Hydrogels. Advanced Functional Materials. 2017;27(33). doi:10.1002/adfm.201701807.
  • Gallastegui A, Dominguez-Alfaro A, Lezama L, et al. Fast visible-light photopolymerization in the presence of multiwalled carbon nanotubes: toward 3D printing conducting nanocomposites. ACS Macro Lett. 2022;11(3):303–309. doi:10.1021/acsmacrolett.1c00758
  • Kolczak U, et al. Reaction mechanism of monoacyl- and bisacylphosphine oxide photoinitiators studied by 31P-, 13C-, and 1H-CIDNP and ESR. J Amer Chem Soc. 1996;118(27):6477–6489. doi:10.1021/ja9534213.
  • Vazquez-Martel C, Mainik P, Blasco E. Natural and naturally derived photoinitiating systems for light-based 3D printing. Organic Mater. 2022;4(04):281–291. doi:10.1055/a-1976-0453
  • Kolb C, Lindemann N, Wolter H, et al. 3D-printing of highly translucent ORMOCER ®-based resin using light absorber for high dimensional accuracy. J Appl Polymer Sci. 2020;138:3. doi:10.1002/app.49691
  • Wang F, Chong Y, Wang F, et al. Photopolymer resins for luminescent three-dimensional printing. J Appl Polymer Sci. 2017;134:32. doi:10.1002/app.44988
  • Zhang R, Larsen NB. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab Chip. 2017;17(24):4273–4282. doi:10.1039/c7lc00926g
  •  Stevens LJ, Burgess JR, Stochelski MA, et al. Amounts of artificial food dyes and added sugars in foods and sweets commonly consumed by children. Clin Pediatr (Phila). 2015;54(4):309–321. doi:10.1177/0009922814530803.
  • Grigoryan B, DC Corbett SP, Sazer DW. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019;364:458–464.
  • Obaid MK, Abdullah LC, Idan IJ. Removal of reactive orange 16 Dye from aqueous solution by using modified kenaf core fiber. J Chem. 2016;2016:1–7. doi:10.1155/2016/4262578
  • U Simon SD. Direct 3D printing of monolithic ion exchange adsorbers. J Chromatogr. 2019;1587:119–128. doi:10.1016/j.chroma.2018.12.017.
  • Gong H, Bickham BP, Woolley AT, et al. Custom 3D printer and resin for 18 mu m×20 mu m microfluidic flow channels. Lab on a Chip. 2017;17:2899–2909. doi:10.1039/c7lc00644f
  • Gastaldi M, Cardano F, Zanetti M, et al. Functional dyes in polymeric 3D printing: applications and perspectives. ACS Mater Lett. 2020;3(1):1–17. doi:10.1021/acsmaterialslett.0c00455
  • Zhang Q, Bei HP, Zhao M, et al. Shedding light on 3D printing: printing photo-crosslinkable constructs for tissue engineering. Biomaterials. 2022b;286:121566. doi:10.1016/j.biomaterials.2022.121566
  • Lee S, Kim Y, Park D, et al. The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Compos Commun. 2021;26. doi:10.1016/j.coco.2021.100796
  •  Zhang B, Li H, Cheng J, et al. Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv Mater. 2021aa;27:e2101298. doi:10.1002/adma.202101298.
  • Borrello J, Nasser P, Iatridis J, et al. 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer. Addit Manuf. 2018;23:374–380. doi:10.1016/j.addma.2018.08.019
  • He Y, Li N, Xiang Z, et al. Natural polyphenol as radical inhibitors used for DLP-based 3D printing of photosensitive gels. Mater Today Commun. 2022;33. doi:10.1016/j.mtcomm.2022.104698
  • Tarcha PJ, Su L, Baker T, et al. Stability of photocurable anhydrides: methacrylic acid mixed anhydrides of nontoxic diacids. J Polymer Sci A Polymer Chem. 2001;39(24):4189–4195. doi:10.1002/pola.10073
  • Zhang X, Li Z, Yang P, et al. Polyphenol scaffolds in tissue engineering. Mater Horiz. 2021;8(1):145–167. doi:10.1039/d0mh01317j
  • Russo A, Maschio G, Ampelli C. Reaction inhibition as a method for preventing thermal runaway in industrial processes. Macromol Symposia. 2007;259(1):365–370. doi:10.1002/masy.200751341
  • Esfandiari P, Ligon SC, Lagref JJ, et al. Efficient stabilization of thiol-ene formulations in radical photopolymerization. J Polymer Sci A Polymer Chem. 2013;51(20):4261–4266. doi:10.1002/pola.26848
  • Salas A, Zanatta M, Sans V, et al. Chemistry in light-induced 3D printing. ChemTexts. 2023b;9:1. doi:10.1007/s40828-022-00176-z
  • Nauman N, Zaquen N, Boyer C, et al. Miniemulsion photopolymerization in a continuous tubular reactor: particle size controlviamembrane emulsification. Polymer Chem. 2020;11(28):4660–4669. doi:10.1039/d0py00654h
  • Davidson RS. Exploring the science,: technology and applications of UV and EB curing. Sita Technology. 1999.
  • Fouassier J-P. (1995). Photoinitiation, photopolymerization, and photocuring: fundamentals and applications.
  •  Fouassier J-P, Rabek JF. Radiation curing in polymer science and technology: practical aspects and applications. Springer Science & Business Media; 1993.
  • Sato R, Kurihara T, Takeishi M. Rate enhancement of amines in the photopolymerization of methyl methacrylate under oxygen. Polymer International. 1998;47(2):159–164.
  • Decker C. Die Makromolekulare Chemie. 1979;180(8):2027–2030. doi:10.1002/macp.1979.021800818
  • Belon C, Allonas X, Croutxé-barghorn C, et al. Overcoming the oxygen inhibition in the photopolymerization of acrylates: A study of the beneficial effect of triphenylphosphine. J Polymer Sci A Polymer Chem. 2010;48(11):2462–2469. doi:10.1002/pola.24017
  • Ligon SC, Husar B, Wutzel H, et al. Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem Rev. 2014;114(1):557–589. doi:10.1021/cr3005197
  • Yong He QG, Jin Y. (2022). Cell assembly with 3D bioprinting. WILEY-VCH.
  • Kim SH, Yeon YK, Lee JM, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun. 2018;9(1):1620. doi:10.1038/s41467-018-03759-y
  • Mendes-Felipe C, Oliveira J, Etxebarria I, et al. State-of-the-Art and future challenges of UV curable polymer-based smart materials for printing technologies. Adv Mater Technol. 2019;4:3. doi:10.1002/admt.201800618
  • Wang S, Yin J, Huang W, et al. UV-induced disulfide metathesis: strengthening interlayer adhesion and rectifying warped 3D printed materials. Addit Manufac. 2022;59. doi:10.1016/j.addma.2022.103085
  • Xu X, Zhou S, Wu J, et al. Relationship between the adhesion properties of UV-curable alumina suspensions and the functionalities and structures of UV-curable acrylate monomers for DLP-based ceramic stereolithography. Ceramics Int. 2021;47(23):32699–32709. doi:10.1016/j.ceramint.2021.08.166
  • Song P, Li M, Zhang B, et al. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering application. Composites B Eng. 2022;244. doi:10.1016/j.compositesb.2022.110163
  • Weng Z, Huang X, Peng S, et al. 3D printing of ultra-high viscosity resin by a linear scan-based vat photopolymerization system. Nat Commun. 2023;14(1):4303. doi:10.1038/s41467-023-39913-4
  • Wu L, Dong Z. Interfacial regulation for 3D printing based on slice-based photopolymerization. Adv Mater. 2023;35(29):e2300903. doi:10.1002/adma.202300903
  • Raj R, Dixit AR, Singh SS, et al. Print parameter optimization and mechanical deformation analysis of alumina-nanoparticle doped photocurable nanocomposites fabricated using vat-photopolymerization based additive technology. Addit Manufac. 2022;60. doi:10.1016/j.addma.2022.103201
  • Yu B, Zheng J, Wu J, et al. Preparation of isotropic tensile photosensitive resins for digital light processing 3D printing using orthogonal thiol-ene and thiol-epoxy dual-cured strategies. Polymer Testing. 2022;116. doi:10.1016/j.polymertesting.2022.107767
  •  Bae JH, Won JC, Lim WB, et al. Highly flexible and photo-activating acryl-polyurethane for 3D steric architectures. Polymers (Basel. 2021;13:6. doi:10.3390/polym13060844.
  • Hanon MM, Ghaly A, Zsidai L, et al. Tribological characteristics of digital light processing (DLP) 3D printed graphene/resin composite: influence of graphene presence and process settings. Mater Design. 2022;218. doi:10.1016/j.matdes.2022.110718
  • Yu C, Schimelman J, Wang P, et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev. 2020;120(19):10695–10743. doi:10.1021/acs.chemrev.9b00810
  • Karalekas D, Aggelopoulos A. Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin. J Mater Process Technol. 2003;136(1–3):146–150. doi:10.1016/s0924-0136(03)00028-1
  • Salmoria GV, Ahrens CH, Beal VE, et al. Evaluation of post-curing and laser manufacturing parameters on the properties of SOMOS 7110 photosensitive resin used in stereolithography. Mater Design. 2009;30(3):758–763. doi:10.1016/j.matdes.2008.05.016
  • Steyrer B, Busetti B, Harakály G, et al. Hot lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Addit Manufac. 2018;21:209–214. doi:10.1016/j.addma.2018.03.013
  • Eibel A, Fast DE, Gescheidt G. Choosing the ideal photoinitiator for free radical photopolymerizations: predictions based on simulations using established data. Polymer Chemistry. 2018;9(41):5107–5115. doi:10.1039/c8py01195h
  • Weigel N, Mannel MJ, Thiele J. Flexible materials for high-resolution 3D printing of microfluidic devices with integrated droplet size regulation. ACS Appl Mater Interface. 2021;26:31086–31101. doi:10.1021/acsami.1c05547
  • Taki K, Watanabe Y, Ito H, et al. Effect of oxygen inhibition on the kinetic constants of the UV-radical photopolymerization of diurethane dimethacrylate/photoinitiator systems. Macromolecules. 2014;47(6):1906–1913. doi:10.1021/ma402437q
  • Yang Y, Zhang Q, Xu T, et al. Photocrosslinkable nanocomposite ink for printing strong,: biodegradable and bioactive bone graft. Biomaterials. 2020;263:120378. doi:10.1016/j.biomaterials.2020.120378
  • Andrzejewska E. Free radical photopolymerization of multifunctional Monomers. In: Three-dimensional microfabrication using two-photon polymerization. 2016. p. 62–81.
  • Dickens SH, et al. Photopolymerization kinetics of methacrylate dental resins. Macromolecules. 2003;36(16):6043–6053.
  • Bucciarelli, A., Paolelli, X., De Vitis, E., et al. VAT photopolymerization 3D printing optimization of high aspect ratio structures for additive manufacturing of chips towards biomedical applications. Addit Manufac. 2022;60; doi:10.1016/j.addma.2022.103200
  • Razavi Bazaz S, Rouhi O, Raoufi MA, et al. 3D printing of inertial microfluidic devices. Sci Rep. 2020;1:5929. doi:10.1038/s41598-020-62569-9
  • Yuan C, Kowsari K, Panjwani S, et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Appl Mater Interfaces. 2019;11(43):40662–40668. doi:10.1021/acsami.9b14692
  • Streets AM, Huang Y. Chip in a lab: microfluidics for next generation life science research. Biomicrofluidics. 2013;7(1):11302. doi:10.1063/1.4789751
  •  Zhang H, Liu H, Zhang N. A review of microinjection moulding of polymeric micro devices. Micromachines (Basel). 2022;13:9. doi:10.3390/mi13091530.
  • Guo MT, Rotem A, Heyman JA, et al. Droplet microfluidics for high-throughput biological assays. Lab Chip. 2012;12(12):2146–2155. doi:10.1039/c2lc21147e
  • Son J, Samuel R, Gale BK, et al. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics. 2017;11(5):054106. doi:10.1063/1.4994548
  • Jafek AR, Harbertson S, Brady H, et al. Instrumentation for xPCR incorporating qPCR and HRMA. Anal Chem. 2018;90(12):7190–7196. doi:10.1021/acs.analchem.7b05176
  • Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–373. doi:10.1038/nature05058
  • Kim P, Lee SE, Jung HS, et al. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels. Lab Chip. 2006;6(1):54–59. doi:10.1039/b512593f
  • Yazdi AA, Popma A, Wong W, et al. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid. 2016;20:3. doi:10.1007/s10404-016-1715-4
  • Hongbin Y, Guangya Z, Siong CF, et al. Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application. Sensors Actuat B Chem. 2009;137(2):754–761. doi:10.1016/j.snb.2008.11.035
  • Wilson ME, Kota N, Kim Y, et al. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip. 2011;11(8):1550–1555. doi:10.1039/c0lc00561d
  •  Mao M, He J, Li X, et al. The emerging frontiers and applications of high-resolution 3D printing. Micromachines, Micro/Nano Manufacturing Backgroud. 2017;4. doi:10.3390/mi8040113.
  • Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017: 106–115. doi:10.1016/j.biomaterials.2017.01.042
  • Shallan AI, Smejkal P, Corban M, et al. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem. 2014;6:3124–3130. doi:10.1021/ac4041857
  •  Buttner U, Sivashankar S, Agambayev S, et al. Flash μ-fluidics: a rapid prototyping method for fabricating microfluidic devices. RSC Adv Microfluidic Chip. 2016;78:74822–74832. doi:10.1039/c6ra13582j.
  • Macdonald NP, Cabot JM, Smejkal P, et al. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal Chem. 2017;7:3858–3866. doi:10.1021/acs.analchem.7b00136
  • van der Linden P, Popov AM, Pontoni D. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer. Lab Chip. 2020;22:4128–4140. doi:10.1039/d0lc00767f.
  •  Bhusal A, Dogan E, Nguyen HA, et al. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips. Biofabrication. 2021;1. doi:10.1088/1758-5090/ac2d78.
  •  Limaye AS, Rosen DW. Process planning method for mask projection micro-stereolithography. Rapid Prototyping Journal. 2007;13(2):76–84. doi:10.1108/13552540710736759.
  •  Zhou C, Chen Y, Waltz RA. Optimized mask image projection for solid freeform fabrication. In: Paper presented at the international design engineering technical conferences and computers and information in engineering conference. 2009.
  • Gong H, Woolley AT, Nordin GP. High density 3D printed microfluidic valves: pumps, and multiplexers. Lab Chip. 2016;16(13):2450–2458. doi:10.1039/c6lc00565a
  • Männel MJ, Selzer L, Bernhardt R, et al. Optimizing process parameters in commercial micro-stereolithography for forming emulsions and polymer microparticles in nonplanar microfluidic devices. Adv Mater Technol. 2019;4:1. doi:10.1002/admt.201800408
  • Kuo AP, Bhattacharjee N, Lee YS, et al. High-Precision stereolithography of biomicrofluidic devices. Adv Mater Technol. 2019;4:6. doi:10.1002/admt.201800395
  • Lee YS, Bhattacharjee N, Folch A. 3D-printed Quake-style microvalves and micropumps. Lab Chip. 2018;18(8):1207–1214. doi:10.1039/C8LC00001H
  • Xu Y, Qi F, Mao H, et al. In-situ transfer vat photopolymerization for transparent microfluidic device fabrication. Nat Commun. 2022;13(1):918. doi:10.1038/s41467-022-28579-z
  • Cui K., et al. A kind of accuracy improving method based on error analysis and feedback for DLP 3D Printing. In 2019 IEEE international conference on service operations and logistics, and informatics (SOLI), IEEE, 2019. Retrieved from Dsitoration
  • Huang YC, Pan JW. High contrast ratio and compact-sized prism for DLP projection system. Opt Express. 2014;22(14):17016–17029. doi:10.1364/OE.22.017016
  • Pan JW, Wang HH. High contrast ratio prism design in a mini projector. Appl Opt. 2013;52(34):8347–8354. doi:10.1364/AO.52.008347
  • Zhen Chen GX,  Ju K, et al. Study on mask graphics optimization of face exposure rapid prototyping system. Mechatronics. 2016;22(1):23–28.
  • Li Z, Chen Z, Liu J, et al. Additive manufacturing of lightweight and high-strength polymer-derived SiOC ceramics. Virtual Phys Protot. 2020;15(2):163–177. doi:10.1080/17452759.2019.1710919
  •  Li Y, Mao Q, Yin J, et al. Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit Manufac. 2021. doi:10.1016/j.addma.2020.101716.
  • Smith JM. Motorized stage DLP large-scale printing: U.S. Patent No. 6, 245. 21 May 2002, 2002.
  • Mitcham L, Nelson WE. Multi-projector printing: U.S. Patent 5, 180, 1993.
  • Wu C. et al. Delta DLP 3D printing with large size. IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2016.
  • Zheng X, Smith W, Jackson J, et al. Multiscale metallic metamaterials. Nat Mater. 2016;10:1100–1106. doi:10.1038/nmat4694
  • Sack J-R and Urrutia J. Handbook of computational geometry, 1999.
  • Xu Y, Mao H, Liu C, et al. Hopping light Vat photopolymerization for multiscale fabrication. Small. 2023;19(11):e2205784. doi:10.1002/smll.202205784
  • Ryan Wicker FM, Elkins C. Multiple material micro-fabrication extending stereo lithography to tissue engineering and other novel application, 2004.
  • Han D, Yang C, Fang NX, et al. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Additive Manuf. 2019;27:606–615. doi:10.1016/j.addma.2019.03.031
  • Martin JJ, Fiore BE, Erb RM. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun. 2015;6:8641. doi:10.1038/ncomms9641
  • Yang Y, Chen Z, Song X, et al. Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater. 2017;29:11. doi:10.1002/adma.201605750
  • Cheng J, Wang R, Sun Z, et al. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat Commun. 2022;13(1):7931. doi:10.1038/s41467-022-35622-6
  • Toombs, J. T., et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science. 2022;376:308–312.
  • Regehly M, Garmshausen Y, Reuter M, et al. Xolography for linear volumetric 3D printing. Nature. 2020;588(7839):620–624. doi:10.1038/s41586-020-3029-7
  • De Beer, MP, et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Science Advances, 2019, 8723.