1,454
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Understanding the influence of alloying elements on the print quality of powder bed fusion-based metal additive manufacturing: Ta and Cu addition to Ti alloy

&
Article: e2248464 | Received 28 Jul 2023, Accepted 02 Aug 2023, Published online: 28 Aug 2023

References

  • JOM article on the Titanic: did a metallurgical failure cause a night to remember? [cited 2023 Apr 10]. Available from: https://www.tms.org/pubs/journals/jom/9801/felkins-9801.html
  • Foecke TJ. Metallurgy of the RMS titanic. NIST [Online]. 1998 Feb [cited 2023 Apr 18]. Available from: https://www.nist.gov/publications/metallurgy-rms-titanic
  • Pollock TM. Alloy design for aircraft engines. Nature Mater. 2016;15(8):809–815. DOI:10.1038/nmat4709
  • Cann JL, De Luca A, Dunand DC, et al. Sustainability through alloy design: challenges and opportunities. Prog Mater Sci. 2021;117:100722. DOI:10.1016/j.pmatsci.2020.100722
  • Pickering EJ, Carruthers AW, Barron PJ, et al. High-entropy alloys for advanced nuclear applications. Entropy. 2021;23(1):98. DOI:10.3390/e23010098
  • Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy design, processing, and performance of β titanium alloys as biomedical materials. Int Mater Rev. 2021;66(2):114–139. DOI:10.1080/09506608.2020.1735829
  • Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog in mater scie. 2018;93:45–111.
  • Bandyopadhyay A, Mitra I, Shivaram A, Dasgupta N, Bose S. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Additive Manufacturing. 2019;28:259–266.
  • Bandyopadhyay A, Mitra I, Avila JD, Upadhyayula M, Bose S Porous metal implants: Processing, properties, and challenges. Int J of Ext Manufac. 2023.
  • Peters M, Kumpfert J, Ward CH, et al. Titanium alloys for aerospace applications. Adv Eng Mater. 2003;5(6):419–427. DOI:10.1002/adem.200310095
  • Boyer RR, Briggs RD. The use of β titanium alloys in the aerospace industry. J Materi Eng Perform. 2005;14(6):681–685. DOI:10.1361/105994905X75448
  • Williams JC, Boyer RR. Opportunities and issues in the application of titanium alloys for aerospace components. Metals (Basel). 2020;10(6):705. DOI:10.3390/met10060705
  • Bandyopadhyay A, Traxel KD, Lang M, et al. Alloy design via additive manufacturing: advantages, challenges, applications and perspectives. Mater Today. 2022;52:207–224. DOI:10.1016/j.mattod.2021.11.026
  • Traxel KD, Bandyopadhyay A. Modeling and experimental validation of additively manufactured tantalum-titanium bimetallic interfaces. Mater Des. 2021;207:109793. DOI:10.1016/j.matdes.2021.109793
  • Fagundes AP, de B. Lira JO, Padoin N, et al. Additive manufacturing of functional devices for environmental applications: a review. J Environ Chem Eng. 2022;10(3):108049. DOI:10.1016/j.jece.2022.108049
  • du Plessis A, Broeckhoven C, Yadroitsava I, et al. Beautiful and functional: a review of biomimetic design in additive manufacturing. Addit Manuf. 2019;27:408–427. DOI:10.1016/j.addma.2019.03.033
  • Liu G, Zhang X, Chen X, et al. Additive manufacturing of structural materials. Mater Sci Eng R. 2021;145:100596. DOI:10.1016/j.mser.2020.100596
  • Bandyopadhyay A, Zhang Y, Bose S. Recent developments in metal additive manufacturing. Curr Opin Chem Eng. 2020;28:96–104. DOI:10.1016/j.coche.2020.03.001
  • Tofail SAM, Koumoulos EP, Bandyopadhyay A, et al. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21(1):22–37. DOI:10.1016/j.mattod.2017.07.001
  • Gartner survey reveals that high acquisition and start-up costs are delaying investment in 3D printers. Gartner [cited 2023 Apr 3]. Available from: https://www.gartner.com/en/newsroom/press-releases/2014-12-09-gartner-survey-reveals-that-high-acquisition-and-start-up-costs-are-delaying-investment-in-3d-printers
  • Sun Z, Ma Y, Ponge D, et al. Thermodynamics-guided alloy and process design for additive manufacturing. Nat Commun. 2022;13(1). DOI:10.1038/s41467-022-31969-y
  • Clare AT, Mishra RS, Merklein M, et al. Alloy design and adaptation for additive manufacture. J Mater Process Technol. 2022;299:117358. DOI:10.1016/j.jmatprotec.2021.117358
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. DOI:10.1016/j.pmatsci.2017.10.001
  • Zhang D, Qiu D, Gibson MA, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature. 2019;576(7785):91–95. DOI:10.1038/s41586-019-1783-1
  • Mosallanejad MH, Niroumand B, Aversa A, et al. In-situ alloying in laser-based additive manufacturing processes: a critical review. J Alloys Compd. 2021;872:159567. DOI:10.1016/j.jallcom.2021.159567
  • Sing SL, Huang S, Goh GD, et al. Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion. Prog Mater Sci. 2021;119:100795. DOI:10.1016/j.pmatsci.2021.100795
  • Yao L, Huang S, Ramamurty U, et al. On the formation of “fish-scale” morphology with curved grain interfacial microstructures during selective laser melting of dissimilar alloys. Acta Mater. 2021;220:117331. DOI:10.1016/j.actamat.2021.117331
  • Sun J, Guo M, Shi K, et al. Influence of powder morphology on laser absorption behavior and printability of nanoparticle-coated 90W-Ni-Fe powder during laser powder bed fusion. Mater Sci Addit Manuf. 2022;1. DOI:10.18063/msam.v1i2.11
  • Chua C, Sing SL, Chua CK. Characterisation of in-situ alloyed titanium-tantalum lattice structures by laser powder bed fusion using finite element analysis. Virtual Phys Prototyp. 2023;18(1):e2138463. DOI:10.1080/17452759.2022.2138463
  • Sing SL. Perspectives on additive manufacturing enabled beta- titanium alloys for biomedical applications. Int J Bioprinting. 2021;8(1):478. DOI:10.18063/ijb.v8i1.478
  • Zhang H, Gu D, Dai D. Laser printing path and its influence on molten pool configuration, microstructure and mechanical properties of laser powder bed fusion processed rare earth element modified Al-Mg alloy. Virtual Phys Prototyp. Apr. 2022;17(2):308–328. DOI:10.1080/17452759.2022.2036530
  • Yu W, Xiao Z, Zhang X, et al. Processing and characterization of crack-free 7075 aluminum alloys with elemental Zr modification by laser powder bed fusion. Mater Sci Addit Manuf. 2022;1(1):4. DOI:10.18063/msam.v1i1.4
  • Huang S, Narayan RL, Tan JHK, et al. Resolving the porosity-unmelted inclusion dilemma during in-situ alloying of Ti34Nb via laser powder bed fusion. Acta Mater. 2021;204:116522. DOI:10.1016/j.actamat.2020.116522
  • Huang S, Kumar P, Yeong WY, et al. Fracture behavior of laser powder bed fusion fabricated Ti41Nb via in-situ alloying. Acta Mater. 2022;225:117593. DOI:10.1016/j.actamat.2021.117593
  • Bandyopadhyay A, Ciliveri S, Bose S. Metal additive manufacturing for load-bearing implants. J Indian Inst Sci. 2022;102:561–584. DOI:10.1007/s41745-021-00281-x
  • Ciliveri S, Bandyopadhyay A. Influence of strut-size and cell-size variations on porous Ti6Al4V structures for load-bearing implants. J Mech Behav Biomed Mater. 2022;126:105023. DOI:10.1016/j.jmbbm.2021.105023
  • Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130) [cited 2022 May 6]. Available from: https://www.astm.org/f1713-08r21e01.html
  • Kolli RP, Devaraj A. A review of metastable beta titanium alloys. Metals (Basel). 2018;8(7):506. DOI:10.3390/met8070506
  • Bandyopadhyay A, Mitra I, Goodman SB, et al. Improving biocompatibility for next generation of metallic implants. Prog Mater Sci. 2023;133:101053. DOI:10.1016/j.pmatsci.2022.101053
  • Cotton JD, Briggs RD, Boyer RR, et al. State of the Art in beta titanium alloys for airframe applications. JOM. 2015;67(6):1281–1303. DOI:10.1007/s11837-015-1442-4
  • Ng CH, Bermingham MJ, Kent D, et al. High stability and high strength β-titanium alloys for additive manufacturing. Mater Sci Eng A. 2021;816:141326. DOI:10.1016/j.msea.2021.141326
  • Traxel KD, Bandyopadhyay A. Selective laser melting of Ti6Al4V-B4C-BN in situ reactive composites. J Mater Res Technol. 2022;18:2654–2671. DOI:10.1016/j.jmrt.2022.03.092
  • Cai C, Wu X, Liu W, et al. Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: parameter optimization, heat treatment and mechanical performance. J Mater Sci Technol. 2020;57:51–64. DOI:10.1016/j.jmst.2020.05.004
  • Liu YJ, Li XP, Zhang LC, et al. Processing and properties of topologically optimised biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Mater Sci Eng A. 2015;642:268–278. DOI:10.1016/j.msea.2015.06.088
  • Han C, Johansson CB, Wennerberg A, et al. Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants. Clin Oral Implants Res. 1998;9(1):1–10. DOI:10.1034/j.1600-0501.1998.090101.x
  • Johansson CB, Lausmaa J, Röstlund T, et al. Commercially pure titanium and Ti6AI4V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone. J Mater Sci: Mater Med. 1993;4(2):132–141. DOI:10.1007/BF00120382
  • Roy M, Balla VK, Bandyopadhyay A, et al. MgO-Doped tantalum coating on Ti: microstructural study and biocompatibility evaluation. ACS Appl Mater Interfaces. 2012;4(2):577–580. DOI:10.1021/am201365e
  • Zhang E, Li F, Wang H, et al. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng C. 2013;33(7):4280–4287. DOI:10.1016/j.msec.2013.06.016
  • Mitra I, Bose S, Dernell WS, et al. 3D printing in alloy design to improve biocompatibility in metallic implants. Mater Today. 2021;45:20–34. DOI:10.1016/j.mattod.2020.11.021
  • Liu J, Li F, Liu C, et al. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng C. 2014;35:392–400. DOI:10.1016/j.msec.2013.11.028
  • Ma Z, Ren L, Liu R, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti–6Al–4V–5Cu alloy. J Mater Sci Technol. Apr 2015;31. DOI:10.1016/j.jmst.2015.04.002
  • Liu R, Memarzadeh K, Chang B, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985. DOI:10.1038/srep29985
  • Livescu V, Knapp CM, Gray GT, et al. Additively manufactured tantalum microstructures. Materialia. 2018;1:15–24. DOI:10.1016/j.mtla.2018.06.007
  • Zhao D, Han C, Li Y, et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. J Alloys Compd. 2019;804:288–298. DOI:10.1016/j.jallcom.2019.06.307
  • Huang S, Sing SL, de Looze G, et al. Laser powder bed fusion of titanium-tantalum alloys: compositions and designs for biomedical applications. J Mech Behav Biomed Mater. 2020;108:103775. DOI:10.1016/j.jmbbm.2020.103775
  • Imai K, Ikeshoji T-T, Sugitani Y, et al. Densification of pure copper by selective laser melting process. Mech Eng J. 2020;7(2):19-00272. DOI:10.1299/mej.19-00272
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58(9):3303–3312. DOI:10.1016/j.actamat.2010.02.004
  • Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature [cited 2023 Jan 20]. Available from: https://www.astm.org/e0009-19.html
  • Sing SL, Wiria FE, Yeong WY. Selective laser melting of titanium alloy with 50 wt% tantalum: effect of laser process parameters on part quality. Int J Refract Met Hard Mater. 2018;77:120–127. DOI:10.1016/j.ijrmhm.2018.08.006
  • Brodie EG, Medvedev AE, Frith JE, et al. Remelt processing and microstructure of selective laser melted Ti25Ta. J Alloys Compd. 2020;820:153082. DOI:10.1016/j.jallcom.2019.153082
  • Cottam R, Palanisamy S, Avdeev M, et al. Diffraction line profile analysis of 3D wedge samples of Ti-6Al-4V fabricated using four different additive manufacturing processes. Metals (Basel). 2019;9:60. DOI:10.3390/met9010060
  • Newby EB, Yadroitsava I, Kouprianoff D. In-situ alloying of Ti6Al4V-x%Cu structures by direct metal laser sintering [Online]; 2017 [cited 2023 Feb 23]. Available from: http://ir.cut.ac.za/handle/11462/1714
  • Guschlbauer R, Burkhardt AK, Fu Z, et al. Effect of the oxygen content of pure copper powder on selective electron beam melting. Mater Sci Eng A. 2020;779:139106. DOI:10.1016/j.msea.2020.139106
  • Assael MJ, Kalyva AE, Antoniadis KD, et al. Reference data for the density and viscosity of liquid copper and liquid Tin. J Phys Chem Ref Data. 2010;39(3):033105. DOI:10.1063/1.3467496
  • Paradis P-F, Ishikawa T, Yoda S. Non-Contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int J Thermophys. 2002;23(3):825–842. DOI:10.1023/A:1015459222027
  • Mosallanejad MH, Niroumand B, Aversa A, et al. Laser powder bed fusion in-situ alloying of Ti-5%Cu alloy: process-structure relationships. J Alloys Compd. 2021;857:157558. DOI:10.1016/j.jallcom.2020.157558
  • Newby E, Yadroitsava I, Krakhmalev P, et al. Investigation of in-situ alloying grade 23 Ti with 5 at.%Cu by laser powder bed fusion for biomedical applications [Online]; 2019 [cited 2023 Apr 6]. Available from: https://www.semanticscholar.org/paper/INVESTIGATION-OF-IN-SITU-ALLOYING-GRADE-23-Ti-WITH-Newby-Yadroitsava/2d387d6d0b768d3a0bf0e26634b4f2cc7ec314dd
  • Kikuchi M, Takada Y, Kiyosue S, et al. Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater. 2003;19(3):174–181. DOI:10.1016/S0109-5641(02)00027-1
  • Savchenko IV, Stankus SV. Thermal conductivity and thermal diffusivity of tantalum in the temperature range from 293 to 1800 K. Thermophys Aeromech. 2008;15(4):679–682. DOI:10.1007/s11510-008-0017-z
  • Jung HY, Choi SJ, Prashanth KG, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study. Mater Des. 2015;86:703–708. DOI:10.1016/j.matdes.2015.07.145
  • Levine BR, Sporer S, Poggie RA, et al. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006;27(27):4671–4681. DOI:10.1016/j.biomaterials.2006.04.041
  • Shaikh A, Kumar S, Dawari A, et al. Effect of temperature and cooling rates on the α+β morphology of Ti-6Al-4V alloy. Procedia Struct Integrity. 2019;14:782–789. DOI:10.1016/j.prostr.2019.07.056
  • Peters M, Lütjering G, Ziegler G. Control of microstructures of (α + β)-titanium alloys. Int J Mater Res. 1983;74(5):274–282. DOI:10.1515/ijmr-1983-740503
  • Freund LB, Suresh S. Thin film materials: stress, defect formation and surface evolution. Cambridge, UK: Cambridge University Press; 2004.
  • Prashanth KG, Scudino S, Maity T, et al. Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett. 2017;5(6):386–390. DOI:10.1080/21663831.2017.1299808
  • Marinelli G, Martina F, Ganguly S, et al. Microstructure, hardness and mechanical properties of two different unalloyed tantalum wires deposited via wire + arc additive manufacture. Int J Refract Met Hard Mater. 2019;83:104974. DOI:10.1016/j.ijrmhm.2019.104974
  • Fiołek Z, Kopia A, Moskalewicz T. The influence of electrophoretic deposition parameters and heat treatment on the microstructure and tribological properties of nanocomposite Si3N4/PEEK 708 coatings on titanium alloy. Coatings. 2019;9:530. DOI:10.3390/coatings9090530