1,209
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Digital design and additive manufacturing of structural materials in electrochemical and thermal energy storage systems: a review

, , , &
Article: e2273949 | Received 15 Jul 2023, Accepted 15 Oct 2023, Published online: 01 Nov 2023

References

  • Iyer G, Ou Y, Edmonds J, et al. Ratcheting of climate pledges needed to limit peak global warming. Nat Clim Change. 2022;12(12):1129–1135.
  • The United Nations. For a livable climate: Net-zero commitments must be backed by credible action. Available from: https://www.un.org/en/climatechange/net-zero-coalition.
  • Cárdenas B, Swinfen-Styles L, Rouse J, et al. Energy storage capacity vs. renewable penetration: a study for the UK. Renewable Energy. 2021;171:849–867.
  • Koohi-Fayegh S, Rosen MA. A review of energy storage types, applications and recent developments. J Energy Storage. 2020;27:101047.
  • Ge R, Cumming DJ, Smith RM. Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions. Powder Technol. 2022;403:117366.
  • Li Q, Wei W, Li Y, et al. Development and investigation of form-stable quaternary nitrate salt based composite phase change material with extremely low melting temperature and large temperature range for low-mid thermal energy storage. Energy Rep. 2022;8:1528–1537.
  • Grant PS, Greenwood D, Pardikar K, et al. Roadmap on Li-ion battery manufacturing research. J Phys: Energy. 2022;4(4):042006.
  • Ge R, Ghadiri M, Bonakdar T, et al. Deformation of 3D printed agglomerates: multiscale experimental tests and DEM simulation. Chem Eng Sci. 2020;217:115526.
  • Ge R, Ghadiri M, Bonakdar T, et al. 3D printed agglomerates for granule breakage tests. Powder Technol. 2017;306:103–112.
  • Zheng X, Lee H, Weisgraber TH, et al. Ultralight, ultrastiff mechanical metamaterials. Science. 2014;344(6190):1373–1377.
  • Pham M-S, Liu C, Todd I, et al. Damage-tolerant architected materials inspired by crystal microstructure. Nature. 2019;565(7739):305–311.
  • Ge R, Humbert G, Martinez R, et al. Additive manufacturing of a topology-optimised multi-tube energy storage device: experimental tests and numerical analysis. Appl Therm Eng. 2020;180:115878.
  • Rasaki S, Liu C, Lao C, et al. The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: a comprehensive review. Renewable Sustainable Energy Rev. 2021;148:111369.
  • Jafari D, Wits WW. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: a review. Renewable Sustainable Energy Rev. 2018;91:420–442.
  • Pang Y, Cao Y, Chu Y, et al. Additive manufacturing of batteries. Adv Funct Mater. 2020;30(1):1906244.
  • Pizzolato A, Sharma A, Ge R, et al. Maximization of performance in multi-tube latent heat storage–optimization of fins topology, effect of materials selection and flow arrangements. Energy. 2020;203:114797.
  • Freeman TB, Foster KE, Troxler CJ, et al. Advanced materials and additive manufacturing for phase change thermal energy storage and management: a review. Adv Energy Mater. 2023;13:2204208.
  • Tian X, Jin J, Yuan S, et al. Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater. 2017;7(17):1700127.
  • Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat Nanotechnol. 2011;6(5):277–281.
  • Zhu C, Han T, Duoss EB, et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun. 2015;6(1):1–8.
  • Trembacki BL, Vadakkepatt A, Roberts SA, et al. Volume-averaged electrochemical performance modeling of 3D interpenetrating battery electrode architectures. J Electrochem Soc. 2019;167(1):013507.
  • Choudhury S, Agrawal M, Formanek P, et al. Nanoporous cathodes for high-energy Li–S batteries from gyroid block copolymer templates. ACS Nano. 2015;9(6):6147–6157.
  • Werner J, Rodríguez-Calero G, Abruña H, et al. Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy Environ Sci. 2018;11(5):1261–1270.
  • Mitchell SL, Ortiz M. Computational multiobjective topology optimization of silicon anode structures for lithium-ion batteries. J Power Sources. 2016;326:242–251.
  • Deva A, Krs V, Robinson LD, et al. Data driven analytics of porous battery microstructures. Energy Environ Sci. 2021;14(4):2485–2493.
  • Zhang Y, Ma G, Wang J, et al. Numerical and experimental study of phase-change temperature controller containing graded cellular material fabricated by additive manufacturing. Appl Therm Eng. 2019;150:1297–1305.
  • Diani A, Nonino C, Rossetto L. Melting of phase change materials inside periodic cellular structures fabricated by additive manufacturing: experimental results and numerical simulations. Appl Therm Eng. 2022;215:118969.
  • Hu X, Gong X. Experimental and numerical investigation on thermal performance enhancement of phase change material embedding porous metal structure with cubic cell. Appl Therm Eng. 2020;175:115337.
  • Qureshi ZA, Al-Omari SAB, Elnajjar E, et al. Using triply periodic minimal surfaces (TPMS)-based metal foams structures as skeleton for metal-foam-PCM composites for thermal energy storage and energy management applications. Int Commun Heat Mass Transfer. 2021;124:105265.
  • Ramazani H, Kami A. Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review. Prog Addit Manuf. 2022;7:1–18.
  • Tavakoli A, Hashemi J, Najafian M, et al. Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins. Renewable Energy. 2023:119200.
  • Torquato S, Hyun S, Donev A. Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Phys Rev Lett. 2002;89(26):266601.
  • Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36.
  • Van Dijk NP, Maute K, Langelaar M, et al. Level-set methods for structural topology optimization: a review. Struct Multidiscipl Optim. 2013;48(3):437–472.
  • Pizzolato A. Topology optimization for energy problems. Torino: Politecnico di Torino; 2018.
  • Panesar A, Abdi M, Hickman D, et al. Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing. Addit Manuf. 2018;19:81–94.
  • Miskin MZ, Khaira G, de Pablo JJ, et al. Turning statistical physics models into materials design engines. Proc Natl Acad Sci USA. 2016;113(1):34–39.
  • Xue D, Balachandran PV, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design. Nat Commun. 2016;7(1):1–9.
  • Bastek J-H, Kumar S, Telgen B, et al. Inverting the structure–property map of truss metamaterials by deep learning. Proc Natl Acad Sci USA. 2022;119(1):e2111505119.
  • Moghadam PZ, Rogge SM, Li A, et al. Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter. 2019;1(1):219–234.
  • Human bone. Available from: https://statnano.com/news/68390/Batteries-Mimic-Mammal-Bones-for-Stability.
  • Bubbles. Available from: https://www.pinterest.co.uk/pin/315463148889921735/.
  • Honeycomb. Available from: https://www.pinterest.co.uk/pin/370913719314630083/.
  • Nathan Myhrvold, Travel & photo essays: Snow flakes. Available from: http://nathanmyhrvold.com/index.php/travel/essay/snowflakes.
  • Pham M, Ahn H. Experimental optimization of a hybrid foil–magnetic bearing to support a flexible rotor, experimental optimization of a hybrid foil-magnetic bearing to support a flexible rotor. Mech Syst Signal Process. 2014;46. Available from: https://www.pinterest.co.uk/pin/369998925645095791/.
  • Cong F, Chen J, Dong G, et al. Experimental validation of impact energy model for the rub–impact assessment in a roto rsystem. Mech Syst Signal Process. 2011;25. Available from: https://www.pinterest.co.uk/pin/72409506501318858/.
  • Fan C, Pan M. Fluid-induced instability elimination of rotor-bearing system with an electromagnetic exciter. Int J Mech Sci. 2010;52(4). Available from: https://www.featool.com/model_showcase/03_structural_mechanics_07_topology_optimization1/.
  • Jung Y, Torquato S. Fluid permeabilities of triply periodic minimal surfaces. Phys Rev E. 2005;72(5):056319.
  • Mirzendehdel AM, Rankouhi B, Suresh K. Strength-based topology optimization for anisotropic parts. Addit Manuf. 2018;19:104–113.
  • Langelaar M. Topology optimization of 3D self-supporting structures for additive manufacturing. Addit Manuf. 2016;12:60–70.
  • Zhakeyev A, Wang P, Zhang L, et al. Additive manufacturing: unlocking the evolution of energy materials. Adv Sci. 2017;4(10):1700187.
  • Gulzar U, Glynn C, O'Dwyer C. Additive manufacturing for energy storage: methods, designs and material selection for customizable 3D printed batteries and supercapacitors. Curr Opin Electrochem. 2020;20:46–53.
  • Ian Gibson IG. Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing. New York: Springer; 2015.
  • Sun C, Wang Y, McMurtrey MD, et al. Additive manufacturing for energy: a review. Appl Energy. 2021;282:116041.
  • Huang Z, Shao G, Li L. Micro/nano functional devices fabricated by additive manufacturing. Prog Mater Sci. 2022;131:101020.
  • Hoath SD, Harlen OG, Hutchings IM. Jetting behavior of polymer solutions in drop-on-demand inkjet printing. J Rheol. 2012;56(5):1109–1127.
  • Oh Y, Bharambe V, Mummareddy B, et al. Cortes, Microwave dielectric properties of zirconia fabricated using NanoParticle Jetting™, Additive Manufacturing. 2019:27;586–594.
  • Unkovskiy S, Spintzyk J, Brom F, et al. Direct 3D printing of silicone facial prostheses: A preliminary experience in digital workflow. J Prosthet Dent 2014;120(2):303–308.
  • Hou Y, Gao M, Chen J, et al. Preparation of iron oxide–coated aramid fibres for improving the mechanical performance and flame retardancy of multi jet fusion–printed polyamide 12 composites. Virtual Phys Prototyp. 2023;18(1):e2171892.
  • Desktop metal, What is single pass jetting. Available from: https://www.desktopmetal.com/resources/what-is-single-pass-jetting.
  • Bae C-J, Diggs AB, Ramachandran A. Quantification and certification of additive manufacturing materials and processes, Additive manufacturing. Elsevie(r2018):181–213.
  • 3DEXPERIENCE, 3D priting - addtive: Directed energy deposition - DED, LENS, EBAM. Available from: https://make.3dexperience.3ds.com/processes/directed-energy-deposition.
  • Gibson I, Rosen D, Stucker B. Vat photopolymerization processes, additive manufacturing technologies. New York: Springer; 2015. pp. 63–106.
  • King WE, Anderson AT, Ferencz RM, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev. 2015;2(4):041304.
  • Kristiawan RB, Imaduddin F, Ariawan D, et al. A review on the fused deposition modeling (FDM) 3D printing: filament processing,: materials, and printing parameters. Open Eng. 2021;11(1):639–649.
  • Mora S, Pugno NM, Misseroni D. 3D printed architected lattice structures by material jetting. Mater Today. 2022;59:107–132.
  • Ziaee M, Crane NB. Binder jetting: a review of process, materials, and methods. Addit Manuf. 2019;28:781–801.
  • Dass A, Moridi A. State of the art in directed energy deposition: from additive manufacturing to materials design. Coatings. 2019;9(7):418.
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295.
  • Tan HW, Choong YYC, Kuo CN, et al. 3D printed electronics: processes, materials and future trends. Prog Mater Sci. 2022;127:100945.
  • Moon H, Miljkovic N, King WP. High power density thermal energy storage using additively manufactured heat exchangers and phase change material. Int J Heat Mass Tran. 2020;153:119591.
  • Woods J, Mahvi A, Goyal A, et al. Rate capability and Ragone plots for phase change thermal energy storage. Nat Energy. 2021;6(3):295–302.
  • Tian X, Zhou K. 3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale. 2020;12(14):7416–7432.
  • Sun K, Wei TS, Ahn BY, et al. 3D printing of interdigitated Li-Ion microbattery architectures. Adv Mater. 2013;25(33):4539–4543.
  • Ning H, Pikul JH, Zhang R, et al. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc Natl Acad Sci USA. 2015;112(21):6573–6578.
  • Ho CC, Murata K, Steingart DA, et al. A super ink jet printed zinc–silver 3D microbattery. J Micromech Microeng. 2009;19(9):094013.
  • Fu K, Wang Y, Yan C, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater. 2016;28(13):2587–2594.
  • Shen K, Mei H, Li B, et al. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv Energy Mater. 2018;8(4):1701527.
  • Lacey SD, Kirsch DJ, Li Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv Mater. 2018;30(12):1705651.
  • Maurel A, Courty M, Fleutot B, et al. Highly loaded graphite–polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing. Chem Mater. 2018;30(21):7484–7493.
  • Narita K, Citrin MA, Yang H, et al. 3D architected carbon electrodes for energy storage. Adv Energy Mater. 2021;11(5):2002637.
  • Yee DW, Citrin MA, Taylor ZW, et al. Hydrogel-Based additive manufacturing of lithium cobalt oxide. Adv Mater Technol. 2021;6(2):2000791.
  • Saleh MS, Li J, Park J, et al. 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit Manuf. 2018;23:70–78.
  • Deiner LJ, Jenkins T, Powell A, et al. High capacity rate capable aerosol Jet printed Li-Ion battery cathode. Adv Eng Mater. 2019;21(5):1801281.
  • Deiner LJ, Jenkins T, Howell T, et al. Aerosol Jet printed polymer composite electrolytes for solid-state Li-Ion batteries. Adv Eng Mater. 2019;21(12):1900952.
  • Hu J, Jiang Y, Cui S, et al. 3D-printed cathodes of LiMn1− xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv Energy Mater. 2016;6(18):1600856.
  • Wang Z, Ni J, Li L, et al. Theoretical simulation and modeling of three-dimensional batteries. Cell Rep Phys Sci. 2020;1(6):100078.
  • Ragones H, Vinegrad A, Ardel G, et al. On the road to a multi-coaxial-cable battery: development of a novel 3D-printed composite solid electrolyte. J Electrochem Soc. 2019;167(7):070503.
  • Wang J, Sun Q, Gao X, et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach. ACS Appl Mater Interfaces. 2018;10(46):39794–39801.
  • Han J, Johnson I, Chen M. 3D continuously porous graphene for energy applications. Adv Mater. 2021;34:2108750.
  • Zekoll S, Marriner-Edwards C, Hekselman AO, et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ Sci. 2018;11(1):185–201.
  • Wang Y, Chen C, Xie H, et al. 3D-printed all-fiber li-ion battery toward wearable energy storage. Adv Funct Mater. 2017;27(43):1703140.
  • Reyes C, Somogyi R, Niu S, et al. Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Appl Energy Mater. 2018;1(10):5268–5279.
  • Acord KA, Dupuy AD, Bertoli US, et al. Morphology, microstructure, and phase states in selective laser sintered lithium ion battery cathodes. J Mater Process Technol. 2021;288:116827.
  • Cohen E, Menkin S, Lifshits M, et al. Novel rechargeable 3D-microbatteries on 3D-printed-polymer substrates: feasibility study. Electrochim Acta. 2018;265:690–701.
  • Saccone MA, Greer JR. Understanding and mitigating mechanical degradation in lithium–sulfur batteries: additive manufacturing of Li2S composites and nanomechanical particle compressions. J Mater Res. 2021;36(18):3656–3666.
  • Chen Q, Xu R, He Z, et al. Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography. J Electrochem Soc. 2017;164(9):A1852.
  • Li J, Liang X, Liou F, et al. Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing. Sci Rep. 2018;8(1):1–11.
  • Liu C, Xu F, Cheng X, et al. Comparative study on the electrochemical performance of LiFePO4 cathodes fabricated by low temperature 3D printing, direct ink writing and conventional roller coating process. Ceram Int. 2019;45(11):14188–14197.
  • Gao X, Sun Q, Yang X, et al. Toward a remarkable Li-S battery via 3D printing. Nano Energy. 2019;56:595–603.
  • Chen C, Jiang J, He W, et al. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv Funct Mater. 2020;30(10):1909469.
  • Wei TS, Ahn BY, Grotto J, et al. 3D printing of customized Li-ion batteries with thick electrodes. Adv Mater. 2018;30(16):1703027.
  • Shen K, Cao Z, Shi Y, et al. 3D printing lithium salt towards dendrite-free lithium anodes. Energy Storage Mater. 2021;35:108–113.
  • Moser S, Kenel C, Wehner LA, et al. 3D ink-printed, sintered porous silicon scaffolds for battery applications. J Power Sources. 2021;507:230298.
  • Cao D, Xing Y, Tantratian K, et al. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv Mater. 2019;31(14):1807313.
  • Qiao Y, Liu Y, Chen C, et al. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv Funct Mater. 2018;28(51):1805899.
  • McOwen DW, Xu S, Gong Y, et al. 3D-printing electrolytes for solid-state batteries. Adv Mater. 2018;30(18):1707132.
  • Blake AJ, Kohlmeyer RR, Hardin JO, et al. 3D printable ceramic–polymer electrolytes for flexible high-performance li-ion batteries with enhanced thermal stability. Adv Energy Mater. 2017;7(14):1602920.
  • Cheng M, Jiang Y, Yao W, et al. Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries. Adv Mater. 2018;30(39):1800615.
  • Zhou L, Ning W, Wu C, et al. 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Adv Mater Technol. 2019;4(2):1800402.
  • Lyu Z, Lim GJ, Guo R, et al. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv Funct Mater. 2019;29(1):1806658.
  • Thakur A, Dong X. Additive manufacturing of 3D structural battery composites with coextrusion deposition of continuous carbon fibers. Manuf Lett. 2020;26:42–47.
  • Ragones H, Menkin S, Kamir Y, et al. Towards smart free form-factor 3D printable batteries. Sustainable Energy Fuels. 2018;2(7):1542–1549.
  • Maurel A, Grugeon S, Fleutot B, et al. Three-dimensional printing of a LiFePO4/graphite battery cell via fused deposition modeling. Sci Rep. 2019;9(1):1–14.
  • Valera-Jiménez JF, Pérez-Flores JC, Castro-García M, et al. Development of full ceramic electrodes for lithium-ion batteries via desktop-fused filament fabrication and further sintering. Appl Mater Today. 2021;25:101243.
  • Delannoy P-E, Riou B, Brousse T, et al. Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries. J Power Sources. 2015;287:261–268.
  • Young D, Sukeshini A, Cummins R, et al. Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells. J Power Sources. 2008;184(1):191–196.
  • Li C, Shi H, Ran R, et al. Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance. Int J Hydrogen Energy. 2013;38(22):9310–9319.
  • Pham TT, Tu HP, Dao TD, et al. Fabrication of an anode functional layer for an electrolyte-supported solid oxide fuel cell using electrohydrodynamic jet printing. Adv Nat Sci: Nanosci Nanotechnol. 2019;10(1):015004.
  • Yu C-C, Baek JD, Su C-H, et al. Inkjet-printed porous silver thin film as a cathode for a low-temperature solid oxide fuel cell. ACS Appl Mater Interfaces. 2016;8(16):10343–10349.
  • Mitchell-Williams TB, Tomov RI, Saadabadi S, et al. Infiltration of commercially available, anode supported SOFC’s via inkjet printing. Materials for Renewable and Sustainable Energy. 2017;6(2):1–9.
  • Wang C, Tomov R, Mitchell-Williams T, et al. Inkjet printing infiltration of Ni-Gd: CeO2 anodes for low temperature solid oxide fuel cells. J Appl Electrochem. 2017;47(11):1227–1238.
  • Masciandaro S, Torrell M, Leone P, et al. Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications. J Eur Ceram Soc. 2019;39(1):9–16.
  • Pesce A, Hornés A, Núñez M, et al. 3D printing the next generation of enhanced solid oxide fuel and electrolysis cells. J Mater Chem A. 2020;8(33):16926–16932.
  • Guo N, Leu MC. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. Int J Hydrogen Energy. 2012;37(4):3558–3566.
  • Gould BD, Rodgers JA, Schuette M, et al. Performance and limitations of 3D-printed bipolar plates in fuel cells. ECS J Solid State Sci Technol. 2015;4(4):P3063.
  • Ramos-Alvarado B, Hernandez-Guerrero A, Elizalde-Blancas F, et al. Constructal flow distributor as a bipolar plate for proton exchange membrane fuel cells. Int J Hydrogen Energy. 2011;36(20):12965–12976.
  • Fan Z, Zhou X, Luo L, et al. Experimental investigation of the flow distribution of a 2-dimensional constructal distributor. Exp Therm Fluid Sci. 2008;33(1):77–83.
  • Guo N, Leu MC, Koylu UO. Bio-inspired flow field designs for polymer electrolyte membrane fuel cells. Int J Hydrogen Energy. 2014;39(36):21185–21195.
  • Xing B, Cao C, Zhao W, et al. Dense 8 mol% yttria-stabilized zirconia electrolyte by DLP stereolithography. J Eur Ceram Soc. 2020;40(4):1418–1423.
  • Bian B, Wang C, Hu M, et al. Application of 3D printed porous copper anode in microbial fuel cells. Front Energy Res. 2018;6:50.
  • Xing B, Yao Y, Meng X, et al. Self-supported yttria-stabilized zirconia ripple-shaped electrolyte for solid oxide fuel cells application by digital light processing three-dimension printing. Scr Mater. 2020;181:62–65.
  • Taylor AD, Kim EY, Humes VP, et al. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J Power Sources. 2007;171(1):101–106.
  • Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci. 2014;7(3):867–884.
  • Orangi J, Hamade F, Davis VA, et al. 3D printing of additive-free 2D Ti3C2T x (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano. 2019;14(1):640–650.
  • Azhari A, Marzbanrad E, Yilman D, et al. Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes. Carbon N Y. 2017;119:257–266.
  • Fieber L, Evans JD, Huang C, et al. Single-operation, multi-phase additive manufacture of electro-chemical double layer capacitor devices. Addit Manuf. 2019;28:344–353.
  • Zhang C, Kremer MP, Seral-Ascaso A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater. 2018;28(9):1705506.
  • Tang K, Ma H, Tian Y, et al. 3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours. Virtual Phys Prototyp. 2020;15(sup1):511–519.
  • Zhu C, Liu T, Qian F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016;16(6):3448–3456.
  • Zhao C, Wang C, Gorkin Iii R, et al. Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochem Commun. 2014;41:20–23.
  • Xu Y, Zhang R, Harrison D, et al. Design and fabrication of modular supercapacitors using 3D printing; 2018.
  • Nathan-Walleser T, Lazar IM, Fabritius M, et al. 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors. Adv Funct Mater. 2014;24(29):4706–4716.
  • Sun G, An J, Chua CK, et al. Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochem Commun. 2015;51:33–36.
  • Li J, Mishukova V, Östling M. All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes. Appl Phys Lett. 2016;109(12):123901.
  • Chen B, Jiang Y, Tang X, et al. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl Mater Interfaces. 2017;9(34):28433–28440.
  • Delekta SS, Smith AD, Li J, et al. Inkjet printed highly transparent and flexible graphene micro-supercapacitors. Nanoscale. 2017;9(21):6998–7005.
  • Gao T, Zhou Z, Yu J, et al. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv Energy Mater. 2019;9(8):1802578.
  • Wang Z, Zhang QE, Long S, et al. Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl Mater Interfaces. 2018;10(12):10437–10444.
  • Wang T, Li L, Tian X, et al. 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochim Acta. 2019;319:245–252.
  • Yu L, Fan Z, Shao Y, et al. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv Energy Mater. 2019;9(34):1901839.
  • Yao B, Chandrasekaran S, Zhang J, et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule. 2019;3(2):459–470.
  • Idrees M, Ahmed S, Mohammed Z, et al. 3D printed supercapacitor using porous carbon derived from packaging waste. Addit Manuf. 2020;36:101525.
  • Yao B, Chandrasekaran S, Zhang H, et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv Mater. 2020;32(8):1906652.
  • Munuera JM, Paredes JI, Enterría M, et al. High performance Na-O2 batteries and printed microsupercapacitors based on water-processable, biomolecule-assisted anodic graphene. ACS Appl Mater Interfaces. 2019;12(1):494–506.
  • Chae C, Kim Y-B, Lee SS, et al. All-3D-printed solid-state microsupercapacitors. Energy Storage Mater. 2021;40:1–9.
  • Kaur I, Singh P. State-of-the-art in heat exchanger additive manufacturing. Int J Heat Mass Transfer. 2021;178:121600.
  • Deisenroth DC, Moradi R, Shooshtari AH, et al. Review of heat exchangers enabled by polymer and polymer composite additive manufacturing. Heat Transfer Eng. 2018;39(19):1648–1664.
  • Li Q, Li C, Du Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications. Appl Energy. 2019;255:113806.
  • Ge R, Li Q, Li C, et al. Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system. Renewable Energy. 2022;187:829–843.
  • Liu Z, Yao Y, Wu H. Numerical modeling for solid–liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage. Appl Energy. 2013;112:1222–1232.
  • Righetti G, Savio G, Meneghello R, et al. Experimental study of phase change material (PCM) embedded in 3D periodic structures realized via additive manufacturing. Int J Therm Sci. 2020;153:106376.
  • Almonti D, Mingione E, Tagliaferri V, et al. Design and analysis of compound structures integrated with bio-based phase change materials and lattices obtained through additive manufacturing. The Int J Adv Manuf Technol. 2022;119(1):149–161.
  • Qureshi ZA, Al-Omari SAB, Elnajjar E, et al. On the effect of porosity and functional grading of 3D printable triply periodic minimal surface (TPMS) based architected lattices embedded with a phase change material. Int J Heat Mass Transfer. 2022;183:122111.
  • Zhang T, Deng X, Zhao M, et al. Experimental study on the thermal storage performance of phase change materials embedded with additively manufactured triply periodic minimal surface architected lattices. Int J Heat Mass Transfer. 2022;199:123452.
  • Ma J, Ma T, Cheng J, et al. 3D printable, recyclable and adjustable comb/bottlebrush phase change polysiloxane networks toward sustainable thermal energy storage. Energy Storage Mater. 2021;39:294–304.
  • Li C, Li Q, Lu X, et al. Inorganic salt based shape-stabilized composite phase change materials for medium and high temperature thermal energy storage: ingredients selection, fabrication, microstructural characteristics and development, and applications. J Energy Storage. 2022;55:105252.
  • Nofal M, Al-Hallaj S, Pan Y. Experimental investigation of phase change materials fabricated using selective laser sintering additive manufacturing. J Manuf Process. 2019;44:91–101.
  • Nofal M, Al-Hallaj S, Pan Y. Thermal management of lithium-ion battery cells using 3D printed phase change composites. Appl Therm Eng. 2020;171:115126.
  • Rigotti D, Dorigato A, Pegoretti A. 3D printable thermoplastic polyurethane blends with thermal energy storage/release capabilities. Mater Today Commun. 2018;15:228–235.
  • Freeman TB, Messenger MA, Troxler CJ, et al. Fused filament fabrication of novel phase-change material functional composites. Addit Manuf. 2021;39:101839.
  • Singh P, Odukomaiya A, Smith MK, et al. Processing of phase change materials by fused deposition modeling: toward efficient thermal energy storage designs. J Energy Storage. 2022;55:105581.
  • Wei P, Cipriani CE, Pentzer EB. Thermal energy regulation with 3D printed polymer-phase change material composites. Matter. 2021;4(6):1975–1989.
  • Feng C-P, Sun K-Y, Ji J-C, et al. 3D printable, form stable, flexible phase-change-based electronic packaging materials for thermal management. Addit Manuf. 2023;71:103586.
  • Yang Z, Ma Y, Jia S, et al. 3D-printed flexible phase-change nonwoven fabrics toward multifunctional clothing. ACS Appl Mater Interfaces. 2022;14(5):7283–7291.
  • Ma J, Ma T, Cheng J, et al. Polymer encapsulation strategy toward 3D printable, sustainable, and reliable form-stable phase change materials for advanced thermal energy storage. ACS Appl Mater Interfaces. 2022;14(3):4251–4264.
  • Markl M, Körner C. Multiscale modeling of powder bed–based additive manufacturing. Annu Rev Mater Res. 2016;46(1):93–123.
  • Ge R, Flynn J. A computational method for detecting aspect ratio and problematic features in additive manufacturing. J Intell Manuf. 2022;33(2):519–535.
  • Grant PS, Greenwood D, Pardikar K, et al. Roadmap on Li-ion battery manufacturing research. J Phys: Energy. 2022;4:042006.
  • Gao X, Liu X, He R, et al. Designed high-performance lithium-ion battery electrodes using a novel hybrid model-data driven approach. Energy Storage Mater. 2021;36:435–458.
  • Kim J-E, Park K. Multiscale topology optimization combining density-based optimization and lattice enhancement for additive manufacturing. Int J Precis Eng Manufacturing-Green Technol. 2021;8:1197–1208.
  • Chen C-T, Chrzan DC, Gu GX. Nano-topology optimization for materials design with atom-by-atom control. Nat Commun. 2020;11(1):3745.
  • Zheng X, Deotte J, Alonso MP, et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev Sci Instrum. 2012;83(12):125001.
  • Liu M, Wu F, Bai Y, et al. Boosting sodium storage performance of hard carbon anodes by pore architecture engineering. ACS Appl Mater Interfaces. 2021;13(40):47671–47683.
  • Chen J, Liu X, Tian Y, et al. 3D-Printed anisotropic polymer materials for functional applications. Adv Mater. 2022;34(5):2102877.