906
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The role of controlled voids shape on the flexural properties of 3D printed food: an approach for tailoring their mechanical properties

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: e2284816 | Received 22 Sep 2023, Accepted 09 Nov 2023, Published online: 06 Dec 2023

References

  • Sun J, Peng Z, Zhou W, et al. A review on 3D printing for customized food fabrication. Procedia Manuf. 2015;1:308–319. doi:10.1016/j.promfg.2015.09.057
  • Yemenicioğlu A, Farris S, Turkyilmaz M, et al. A review of current and future food applications of natural hydrocolloids. Int J Food Sci Technol. 2020 Apr;55(4):1389–1406. doi:10.1111/ijfs.14363
  • Le-Bail A, Maniglia BC, Le-Bail P. Recent advances and future perspective in additive manufacturing of foods based on 3D printing. Curr Opin Food Sci. 2020;35:54–64. doi:10.1016/j.cofs.2020.01.009
  • Le Tohic C, O’Sullivan JJ, Drapala KP, et al. Effect of 3D printing on the structure and textural properties of processed cheese. J Food Eng. 2018;220:56–64. doi:10.1016/j.jfoodeng.2017.02.003
  • Voon SL, An J, Wong G, et al. 3D food printing: a categorised review of inks and their development. Virtual Phys Prototyp. 2019 Jul;14(3):203–218. doi:10.1080/17452759.2019.1603508
  • Mantihal S, Prakash S, Bhandari B. Texture-modified 3D printed dark chocolate: sensory evaluation and consumer perception study. J Texture Stud. 2019 Oct;50(5):386–399. doi:10.1111/jtxs.12472
  • Pant A, Ni Leam PX, Chua CK, et al. Valorisation of vegetable food waste utilising three-dimensional food printing. Virtual Phys Prototyp. 2023 Dec;18(1):e2146593. doi:10.1080/17452759.2022.2146593
  • Feng C, Zhang M, Liu Z, et al. Effect of drying method on post-processing stability and quality of 3D printed rose-yam paste. Drying Technol. 2021 Jun 1;39(9):1196–1204. doi:10.1080/07373937.2020.1851708
  • Liu Z, Bhandari B, Prakash S, et al. Creation of internal structure of mashed potato construct by 3D printing and its textural properties. Food Res Int. 2018;111:534–543. doi:10.1016/j.foodres.2018.05.075
  • Zhu S, Ruiz de Azua IV, Feijen S, et al. How macroscopic structure of 3D printed protein bars filled with chocolate influences instrumental and sensory texture. LWT. 2021;151:112155. doi:10.1016/j.lwt.2021.112155
  • Huang Ms, Zhang M, Bhandari B. Assessing the 3D printing precision and texture properties of brown rice induced by infill levels and printing variables. Food Bioproc Tech. 2019;12(7):1185–1196. doi:10.1007/s11947-019-02287-x
  • Le Tohic C, Sullivan O, Drapala JJ, et al. Effect of 3D printing on the structure and textural properties of processed cheese. J Food Eng. 2018;220:56–64. doi:10.1016/j.jfoodeng.2017.02.003
  • Vancauwenberghe V, Delele MA, Vanbiervliet J, et al. Model-based design and validation of food texture of 3D printed pectin-based food simulants. J Food Eng. 2018;231:72–82. doi:10.1016/j.jfoodeng.2018.03.010
  • Pérez-Castillo JL, Mora A, Perez-Santiago R, et al. Flexural properties of lattices fabricated with planar and curved layered fused filament fabrication. Materials. 2023;16(9):3451. doi:10.3390/ma16093451
  • Lille M, Nurmela A, Nordlund E, et al. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J Food Eng. 2018;220:20–27. doi:10.1016/j.jfoodeng.2017.04.034
  • Dick A, Bhandari B, Dong X, et al. Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocoll. 2020;107:105940. doi:10.1016/j.foodhyd.2020.105940
  • Dankar I, Haddarah A, Omar FEL, et al. 3D printing technology: The new era for food customization and elaboration. Trends Food Sci Technol. 2018;75:231–242. doi:10.1016/j.tifs.2018.03.018
  • Hussain S, Malakar S, Arora VK. Extrusion-Based 3D food printing: technological approaches, material characteristics, printing stability, and post-processing. Food Eng Rev. 2022;14(1):100–119. doi:10.1007/s12393-021-09293-w
  • Severini C, Derossi A, Azzollini D. Variables affecting the printability of foods: preliminary tests on cereal-based products. Innovat Food Sci Emerg Techn. 2016;38:281–291. doi:10.1016/j.ifset.2016.10.001
  • Liu Z, Dick A, Prakash S, et al. Texture modification of 3D printed air-fried potato snack by varying its internal structure with the potential to reduce oil content. Food Bioproc Tech. 2020;13(3):564–576. doi:10.1007/s11947-020-02408-x
  • Cuan-Urquizo E, Bhaskar A. Flexural elasticity of woodpile lattice beams. Eur J Mech A, Solids. 2018 Jan 1;67:187–199. doi:10.1016/j.euromechsol.2017.09.008
  • Maldonado-Rosas R, Tejada-Ortigoza V, Cuan-Urquizo E, et al. Evaluation of rheology and printability of 3D printing nutritious food with complex formulations. Addit Manuf. 2022;58:103030. doi:10.1016/j.addma.2022.103030
  • U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans [Internet]. 2015. Available from: http://health.gov/dietaryguidelines/2015/guidelines/.
  • Vásquez-Garibay EM, Romero-Velarde E. Esquemas de alimentación saludable en niños durante sus diferentes etapas de la vida: parte II. Preescolares, escolares y adolescentes. Boletín médico del Hospital Infantil de México. Scielomx. 2008;65:605–615.
  • U.S. Department of Agriculture. Food Data Central. 2019. Agricultural research service. Available from: https://fdc.nal.usda.gov/index.html.
  • Sarker U, Hossain MM, Oba S. Nutritional and antioxidant components and antioxidant capacity in green morph amaranthus leafy vegetable. Sci Rep. 2020 Jan;10(1):1336, Available from: https://pubmed.ncbi.nlm.nih.gov/31992722.
  • AOAC (Association of Official Analytical Chemists). Official methods of analysis. 16th ed. Washington DC: Association of Official Analytical Chemists; 1999.
  • Maldonado-Rosas R, Tejada-Ortigoza V, Cuan-Urquizo E, et al. Evaluation of rheology and printability of 3D printing nutritious food with complex formulations. Addit Manuf. 2022;58:103030, Available from: https://www.sciencedirect.com/science/article/pii/S2214860422004225.
  • Severini C, Azzollini D, Albenzio M, et al. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Res Int. 2018;106:666–676. doi:10.1016/j.foodres.2018.01.034
  • Feng C, Zhang M, Bhandari B, et al. Use of potato processing by-product: effects on the 3D printing characteristics of the yam and the texture of air-fried yam snacks. LWT. 2020;125:109265. doi:10.1016/j.lwt.2020.109265
  • He C, Zhang M, Devahastin S. Investigation on spontaneous shape change of 4D printed starch-based purees from purple sweet potatoes As induced by microwave dehydration. ACS Appl Mater Interfaces. 2020 Aug;12(34):37896–37905. Available from. doi:10.1021/acsami.0c10899
  • Gholamipour-Shirazi A, Norton IT, Mills T. Designing hydrocolloid based food-ink formulations for extrusion 3D printing. Food Hydrocoll. 2019;95:161–167. doi:10.1016/j.foodhyd.2019.04.011
  • Tan C, Toh WY, Wong G, et al. Extrusion-based 3D food printing – materials and machines. Int J Bioprint. 2018;4(2):143. doi:10.18063/ijb.v4i2.143
  • Tejada-Ortigoza V, Cuan-Urquizo E. Towards the development of 3D-printed food: a rheological and mechanical approach. Foods. 2022;11. doi:10.3390/foods11091191
  • Yang F, Zhang M, Liu Y. Effect of post-treatment microwave vacuum drying on the quality of 3D-printed mango juice gel. Drying Technol. 2019 Oct 26;37(14):1757–1765. doi:10.1080/07373937.2018.1536884
  • Kim HW, Lee IJ, Park SM, et al. Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough. LWT- Food Sci Techn. 2019;101:69–75. doi:10.1016/j.lwt.2018.11.019
  • Venkatachalam A, Balasubramaniam A, Wilms PFC, et al. Impact of varying macronutrient composition on the printability of pea-based inks in extrusion-based 3D food printing. Food Hydrocoll. 2023;142:108760. doi:10.1016/j.foodhyd.2023.108760
  • Wen Y, Chao C, Che QT, et al. Development of plant-based meat analogs using 3D printing: status and opportunities. Trends Food Sci Technol. 2023;132:76–92. doi:10.1016/j.tifs.2022.12.010
  • Cuan-Urquizo E, Álvarez-Trejo A, Robles Gil A, et al. Effective stiffness of fused deposition modeling infill lattice patterns made of PLA-wood material. Polymers (Basel). 2022;14. doi:10.3390/polym14020337
  • Jungmann R, Szabo ME, Schitter G, et al. Local strain and damage mapping in single trabeculae during three-point bending tests. J Mech Behav Biomed Mater. 2011;4(4):523–534. doi:10.1016/j.jmbbm.2010.12.009
  • He C, Zhang M, Devahastin S. Investigation on spontaneous shape change of 4D printed starch-based purees from purple sweet potatoes as induced by microwave dehydration. ACS Appl Mater Interfaces. 2020 Aug;12(34):37896–37905. doi:10.1021/acsami.0c10899
  • Pérez-Castillo JL, Mora A, Perez-Santiago R, et al. Flexural properties of lattices fabricated with planar and curved layered fused filament fabrication. Materials. 2023;16(9):3451. doi:10.3390/ma16093451
  • Popescu D, Zapciu A, Amza C, et al. FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test. 2018;69:157–166. doi:10.1016/j.polymertesting.2018.05.020
  • Huang B, Singamneni S. Curved layer fused deposition modeling with varying raster orientations. Appl Mechan Mater. 2014;446–447:263–269. doi:10.4028/www.scientific.net/AMM.707.263
  • Masood SH. 10.04 – advances in fused deposition modeling. In: Hashmi S, Batalha GF, Van Tyne CJ, editors Y BBTCMP Oxford: Elsevier; 2014. p. 69–91.