737
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Upgrading analytical models to predict the onset of degradation in selective laser sintering

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Article: e2285414 | Received 31 Aug 2023, Accepted 13 Nov 2023, Published online: 06 Dec 2023

References

  • Berman B. 3-D printing: the new industrial revolution. Bus Horiz. 2012;55(2):155–162. doi:10.1016/j.bushor.2011.11.003
  • Kanishka K, Acherjee B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. J Manuf Process. 2023;89(January):220–283. doi:10.1016/j.jmapro.2023.01.034
  • Segonds F. Design by additive manufacturing: an application in aeronautics and defence. Virtual Phys Prototyp. 2018;13(4):237–245. doi:10.1080/17452759.2018.1498660
  • Fernandez E, Ceretti DA, Wang S, et al. Fused filament fabrication of copolyesters by understanding the balance of inter- and intra-layer welding. Plast Rubber Compos. 2020: 1–7. doi:10.1080/14658011.2020.1855386
  • Van Waeleghem T, Marchesini FH, Cardon L, et al. Melt exit flow modelling and experimental validation for fused filament fabrication: from Newtonian to non-Newtonian effects. J Manuf Process. 2022;77(February):138–150. doi:10.1016/j.jmapro.2022.03.002
  • Jiang J, Lou J, Hu G. Effect of support on printed properties in fused deposition modelling processes. Virtual Phys Prototyp. 2019;14(4):308–315. doi:10.1080/17452759.2019.1568835
  • Tamburrino F, Graziosi S, Bordegoni M. The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study. Virtual Phys Prototyp. 2019;14(4):316–332. doi:10.1080/17452759.2019.1607758
  • La Gala A, Fiorio R, Ceretti DVA, et al. A combined experimental and modeling study for pellet-fed extrusion-based additive manufacturing to evaluate the impact of the melting efficiency. Materials. 2021;14(19):5566. doi:10.3390/ma14195566
  • Ivorra-Martinez J, Peydro MÁ, Gomez-Caturla J, et al. The effects of processing parameters on mechanical properties of 3D-printed polyhydroxyalkanoates parts. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2022.2164734
  • Conner BP, Manogharan GP, Martof AN, et al. Making sense of 3-D printing: creating a map of additive manufacturing products and services. Addit Manuf. 2014;1:64–76. doi:10.1016/j.addma.2014.08.005
  • Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review. Int J Adv Manuf Technol. 2016;83(1–4):389–405. doi:10.1007/s00170-015-7576-2
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143(December 2017):172–196. doi:10.1016/j.compositesb.2018.02.012
  • Rogkas N, Vakouftsis C, Spitas V, et al. Design aspects of additive manufacturing at microscale: a review. Micromachines. 2022;13(5):775. doi:10.3390/mi13050775
  • Rosso S, Meneghello R, Biasetto L, et al. In-depth comparison of polyamide 12 parts manufactured by multi jet fusion and selective laser sintering. Addit Manuf. 2020;36:101713. doi:10.1016/j.addma.2020.101713
  • Craft G, Nussbaum J, Crane N, et al. Impact of extended sintering times on mechanical properties in PA-12 parts produced by powderbed fusion processes. Addit Manuf. 2018;22(March):800–806. doi:10.1016/j.addma.2018.06.028
  • Le KQ, Tran VT, Chen K, et al. Predicting crystallinity of polyamide 12 in multi jet fusion process. J Manuf Process. 2023;99(May 2022):1–11. doi:10.1016/j.jmapro.2023.05.043
  • Guo B, Xu Z, Luo X, et al. A detailed evaluation of surface, thermal, and flammable properties of polyamide 12/glass beads composites fabricated by multi jet fusion. Virtual Phys Prototyp. 2021;16(S1):S39–S52. doi:10.1080/17452759.2021.1899463
  • Yang S, Tang Y, Zhao YF. A new part consolidation method to embrace the design freedom of additive manufacturing. J Manuf Process. 2015;20:444–449. doi:10.1016/j.jmapro.2015.06.024
  • Isaac CW, Duddeck F. Current trends in additively manufactured (3D printed) energy absorbing structures for crashworthiness application–a review. Virtual Phys Prototyp. 2022;17(4):1058–1101. doi:10.1080/17452759.2022.2074698
  • Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys Prototyp. 2021;16(3):347–371. doi:10.1080/17452759.2021.1928520
  • Gheisari R, Chamberlain H, Chi-Tangyie G, et al. Multi-material additive manufacturing of low sintering temperature Bi2Mo2O9 ceramics with Ag floating electrodes by selective laser burnout. Virtual Phys Prototyp. 2020;15(2):133–147. doi:10.1080/17452759.2019.1708026
  • Hon KKB, Gill TJ. Selective laser sintering of SiC/polyamide composites. CIRP Ann Manuf Technol. 2003;52(1):173–176. doi:10.1016/S0007-8506(07)60558-7
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–10290. doi:10.1021/acs.chemrev.7b00074
  • Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. CIRP Ann Manuf Technol. 2007;56(1):205–208. doi:10.1016/j.cirp.2007.05.097
  • Schmid M, Amado A, Wegener K. Polymer powders for selective laser sintering (SLS). AIP Conf Proc. 2015;1664(May):160009. doi:10.1063/1.4918516
  • Khalil Y, Kowalski A, Hopkinson N. Influence of energy density on flexural properties of laser-sintered UHMWPE. Addit Manuf. 2016;10:67–75. doi:10.1016/j.addma.2016.03.002
  • Vasquez M, Haworth B, Hopkinson N. Optimum sintering region for laser sintered nylon-12. Proc Inst Mech Eng Part B J Eng Manuf. 2011;225(12):2240–2248. doi:10.1177/0954405411414994
  • Vasquez M, Haworth B, Hopkinson N. Methods for quantifying the stable sintering region in laser sintered polyamide-12. Polym Eng Sci. 2013;53(6):1230–1240. doi:10.1002/pen.23386
  • Vasquez GM, Majewski CE, Haworth B, et al. A targeted material selection process for polymers in laser sintering. Addit Manuf. 2014;1(2014):127–138. doi:10.1016/j.addma.2014.09.003
  • Chatham CA, Long TE, Williams CB. Powder bed fusion of poly(phenylene sulfide)at bed temperatures significantly below melting. Addit Manuf. 2019;28(May):506–516. doi:10.1016/j.addma.2019.05.025
  •  Vande Ryse R, Andries J, Fiorio R, et al. Extended conference paper 28. In: C Charitidis, L Cardon, D Semitekolos, editor. 2nd International conference on polymer process innovation. Athens: Lavrion; 2022. p. 83–86.
  • Vande Ryse R, Edeleva M, Van Stichel O, et al. Setting the optimal laser power for sustainable powder bed fusion processing of elastomeric polyesters: a combined experimental and theoretical study. Materials. 2022;15(1):385. doi:10.3390/ma15010385
  • Lupone F, Padovano E, Casamento F, et al. Process phenomena and material properties in selective laser sintering of polymers: a review. Materials. 2022;15(1). doi:10.3390/ma15010183
  • Kruth JP, Wang X, Laoui T, et al. Lasers and materials in selective laser sintering. Assem Autom. 2003;23(4):357–371. doi:10.1108/01445150310698652
  • Xiong R, Zhang Z, Huang Y. Identification of optimal printing conditions for laser printing of alginate tubular constructs. J Manuf Process. 2015;20:450–455. doi:10.1016/j.jmapro.2015.06.023
  • Sow MC, De Terris T, Castelnau O, et al. Influence of beam diameter on laser powder bed fusion (L-PBF) process. Addit. Manuf. 2020;36(August):101532. doi:10.1016/j.addma.2020.101532
  • Dunbar AJ, Denlinger ER, Heigel J, et al. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process. Addit Manuf. 2016;12:25–30. doi:10.1016/j.addma.2016.04.007
  • Wudy K, Drummer D. Aging effects of polyamide 12 in selective laser sintering: molecular weight distribution and thermal properties. Addit Manuf. 2019;25(November 2018):1–9. doi:10.1016/j.addma.2018.11.007
  • Pilipović A, Brajlih T, Drstvenšek I. Influence of processing parameters on tensile properties of SLS polymer product. Polymers. 2018;10(11):1208. doi:10.3390/polym10111208
  • Pilipović A, Drstvenšek I, Šercer M. Mathematical model for the selection of processing parameters in selective laser sintering of polymer products. Adv Mech Eng. 2014;2014(1):648562. doi:10.1155/2014/648562
  • Charles A, Bayat M, Elkaseer A, et al. Elucidation of dross formation in laser powder bed fusion at down-facing surfaces: phenomenon-oriented multiphysics simulation and experimental validation. Addit Manuf. 2022;50(December 2021):102551. doi:10.1016/j.addma.2021.102551
  • Chatham CA, Long TE, Williams CB. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog Polym Sci. 2019;93:68–95. doi:10.1016/j.progpolymsci.2019.03.003
  • Brighenti R, Cosma MP, Marsavina L, et al. Laser-based additively manufactured polymers: a review on processes and mechanical models. J Mater Sci. 2021;56(2):961–998. doi:10.1007/s10853-020-05254-6
  • Yao L, Xiao Z, Huang S, et al. The formation mechanism of metal-ceramic interlayer interface during laser powder Bed fusion. Virtual Phys Prototyp. 2023;18(1 ):e2235324. doi:10.1080/17452759.2023.2235324
  • Snow Z, Martukanitz R, Joshi S. On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing. Addit Manuf. 2019;28(November 2018):78–86. doi:10.1016/j.addma.2019.04.017
  • Chu F, Li E, Shen H, et al. Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy. J Manuf Process. 2023;94(March):183–195. doi:10.1016/j.jmapro.2023.03.046
  • Schiochet Nasato D, Pöschel T. Influence of particle shape in additive manufacturing: discrete element simulations of polyamide 11 and polyamide 12. Addit Manuf. 2020;36(February):101421. doi:10.1016/j.addma.2020.101421
  • Lin LL, Yu Sheng S, Fan Di Z, et al. Microstructure of selective laser sintered polyamide. J Wuhan Univ Technol Mater Sci Ed. 2003;18(3):60–63. doi:10.1007/bf02838461
  • Mys N, Van De Sande R, Verberckmoes A, et al. Processing of polysulfone to free flowing powder by mechanical milling and spray drying techniques for use in selective laser sintering. Polymers. 2016;8(4):150. doi:10.3390/polym8040150
  • Dadbakhsh S, Verbelen L, Vandeputte T, et al. Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Phys Procedia. 2016;83:971–980. doi:10.1016/j.phpro.2016.08.102
  • Verbelen L, Dadbakhsh S, Van Den Eynde M, et al. Characterization of polyamide powders for determination of laser sintering processability. Eur Polym J. 2016;75:163–174. doi:10.1016/j.eurpolymj.2015.12.014
  • Verbelen L, Dadbakhsh S, Van den Eynde M, et al. Analysis of the material properties involved in laser sintering of thermoplastic polyurethane. Addit Manuf. 2017;15:12–19. doi:10.1016/j.addma.2017.03.001
  • Mao Y, Wei H, Chang L, et al. Origin of deposition errors and layer-wise control strategies during laser additive manufacturing. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2173615
  • Laumer T, Stichel T, Nagulin K, et al. Optical analysis of polymer powder materials for selective laser sintering. Polym Test. 2016;56:207–213. doi:10.1016/j.polymertesting.2016.10.010
  • Yamauchi Y, Kigure T, Niino T. Penetration depth optimization for proper interlayer adhesion using near-infrared laser in a low-temperature process of PBF-LB/P. J Manuf Process. 2023;98(October 2022):126–137. doi:10.1016/j.jmapro.2023.05.006
  • Wudy K, Lanzl L, Drummer D. Selective laser sintering of filled polymer systems: bulk properties and laser beam material interaction. Phys Proc. 2016;83:991–1002. doi:10.1016/j.phpro.2016.08.104
  • Osmanlic F, Wudy K, Laumer T, et al. Modeling of laser beam absorption in a polymer powder bed. Polymers. 2018;10(7):1–11. doi:10.3390/polym10070784
  • Xin L, Boutaous M, Xin S, et al. Multiphysical modeling of the heating phase in the polymer powder bed fusion process. Addit Manuf. 2017;18:121–135. doi:10.1016/j.addma.2017.10.006
  • Fan KM, Wong KW, Cheung WL, et al. Reflectance and transmittance of TrueFormTM powder and its composites to CO2 laser. Rapid Prototyp J. 2007;13(3):175–181. doi:10.1108/13552540710750924
  • Starr TL, Gornet TJ, Usher JS. The effect of process conditions on mechanical properties of laser-sintered nylon. Rapid Prototyp J. 2011;17(6):418–423. doi:10.1108/13552541111184143
  • Yamauchi Y, Kigure T, Niino T. Quantification of supplied laser energy and its relationship with powder melting process in PBF-LB/P using near-infrared laser. J Manuf Process. 2023;99(January):272–282. doi:10.1016/j.jmapro.2023.05.002
  • Ren Y, Liang L, Shan Q, et al. Effect of volumetric energy density on microstructure and tribological properties of FeCoNiCuAl high-entropy alloy produced by laser powder bed fusion. Virtual Phys Prototyp. 2020;15(S1):543–554. doi:10.1080/17452759.2020.1848284
  • Lupone F, Padovano E, Pietroluongo M, et al. Optimization of selective laser sintering process conditions using stable sintering region approach. Express Polym Lett. 2021;15(2):177–192. doi:10.3144/expresspolymlett.2021.16
  • Myers TL, Brauer CS, Su Y-F, et al. Quantitative reflectance spectra of solid powders as a function of particle size. Appl Opt. 2015;54(15):4863. doi:10.1364/ao.54.004863
  • Mark JE. Polymer data handbook, 2nd Ed. J Am Chem Soc. 2009;131(44):16330–16330. doi:10.1021/ja907879q
  • Bianchi O, Oliveira RVB, Fiorio R, et al. Assessment of Avrami, Ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test. 2008;27(6):722–729. doi:10.1016/j.polymertesting.2008.05.003
  • Singh S, Ramakrishna S, Singh R. Material issues in additive manufacturing: a review. J Manuf Process. 2017;25:185–200. doi:10.1016/j.jmapro.2016.11.006
  • Wauthle R, Vrancken B, Beynaerts B, et al. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf. 2015;5:77–84. doi:10.1016/j.addma.2014.12.008
  • Zhao W, Xiang H, Yu R, et al. Effects of laser scanning speed on the microstructure and mechanical properties of 2205 duplex stainless steel fabricated by selective laser melting. J Manuf Process. 2023;94(March):1–9. doi:10.1016/j.jmapro.2023.03.068
  • Wang D, Liu L, Deng G, et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys Prototyp. 2022;17(2):329–365. doi:10.1080/17452759.2022.2028343
  • Zhang Y, Aiyiti W, Du S, et al. Design and mechanical behaviours of a novel tantalum lattice structure fabricated by SLM. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2192702
  • Wu H, Ren Y, Ren J, et al. Effect of melting modes on microstructure and tribological properties of selective laser melted AlSi10Mg alloy. Virtual Phys Prototyp. 2020;15(S1):570–582. doi:10.1080/17452759.2020.1811932
  • Stiller T, Berer M, Kashyap Katta AD, et al. Powder ageing of polyamide 6 in laser sintering and its effects on powder and component characteristics. Addit Manuf. 2022;58(June):102987. doi:10.1016/j.addma.2022.102987
  • Wu T, Ren Y, Liang L, et al. Tensile strength and wear resistance of glass-reinforced PA1212 fabricated by selective laser sintering. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2022.2150652
  • Ellis A, Noble CJ, Hopkinson N. High speed sintering: assessing the influence of print density on microstructure and mechanical properties of nylon parts. Addit Manuf. 2014;1:48–51. doi:10.1016/j.addma.2014.07.003
  • Hofland EC, Baran I, Wismeijer DA. Correlation of process parameters with mechanical properties of laser sintered PA12 parts. Adv Mater Sci Eng. 2017;2017:11. doi:10.1155/2017/4953173
  • Berretta S, Ghita O, Evans KE. Morphology of polymeric powders in laser sintering (LS): from polyamide to new PEEK powders. Eur Polym J. 2014;59:218–229. doi:10.1016/j.eurpolymj.2014.08.004
  • Schmid M, Wegener K. Additive manufacturing: polymers applicable for laser sintering (LS). Proc Eng. 2016;149(June):457–464. doi:10.1016/j.proeng.2016.06.692
  • Ho HCH, Gibson I, Cheung WL. Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J Mater Process Technol. 1999;89–90:204–210. doi:10.1016/S0924-0136(99)00007-2