2,032
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A multi-materials 3D-printed continuous conductive fibre-based metamaterial for broadband microwave absorption

, , , , , & show all
Article: e2285417 | Received 11 Sep 2023, Accepted 12 Nov 2023, Published online: 06 Dec 2023

References

  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980. doi:10.1126/science.1133628
  • Huang Y, Song W-L, Wang C, et al. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos Sci Technol. 2018;162:206–214. doi:10.1016/j.compscitech.2018.04.028
  • Song W-L, Fan L-Z, Hou Z-L, et al. A wearable microwave absorption cloth. J Mater Chem C. 2017;5(9):2432–2441. doi:10.1039/C6TC05577J
  • Gong P, Hao L, Li Y, et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption. Carbon N Y. 2021;185:272–281. doi:10.1016/j.carbon.2021.09.014
  • Bao S, Zhang M, Jiang Z, et al. Advances in microwave absorbing materials with broad-bandwidth response. Nano Res. 2023;16(8):11054–83. doi:10.1007/s12274-023-5654-6
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402), doi:10.1103/PhysRevLett.100.207402
  • Wen Q-Y, Zhang H-W, Xie Y-S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl Phys Lett. 2009;95(24):241111, doi:10.1063/1.3276072
  • Yin X, Long C, Li J, et al. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays. Sci Rep. 2015;5(1):15367, doi:10.1038/srep15367
  • Nguyen TT, Lim S. Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators. Appl Phys Lett. 2018;112(2):021605, doi:10.1063/1.5004211
  • Wu Y, Lin H, Xiong J, et al. A broadband metamaterial absorber design using characteristic modes analysis. J Appl Phys. 2021;129(13):134902. doi:10.1063/5.0043054
  • Duan Y, Liang Q, Yang Z, et al. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology. Mater Des. 2021;208:109900, doi:10.1016/j.matdes.2021.109900
  • Tan R, Zhou F, Liu Y, et al. 3D printed propeller-like metamaterial for wide-angle and broadband microwave absorption. J. Mater Sci Technol. 2023;144:45–53. doi:10.1016/j.jmst.2022.10.012
  • Zeng S, Feng W, Peng S, et al. Dual-functional SiOC ceramics coating modified carbon fibers with enhanced microwave absorption performance. RSC Adv. 2019;9(53):30685–30692. doi:10.1039/C9RA06166E
  • Folgueras L de C, Nohara EL, Faez R, et al. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline. Mat Res. 2007;10(1):95–99. doi:10.1590/S1516-14392007000100020
  • Yang Y, Wang J, Song C, et al. Electromagnetic shielding using flexible embroidery metamaterial absorbers: design, analysis and experiments. Mater Des. 2022;222:111079, doi:10.1016/j.matdes.2022.111079
  • Lee S-E, Lee W-J, Oh K-S, et al. Broadband all fiber-reinforced composite radar absorbing structure integrated by inductive frequency selective carbon fiber fabric and carbon-nanotube-loaded glass fabrics. Carbon N Y. 2016;107:564–572. doi:10.1016/j.carbon.2016.06.005
  • Lee S-E, Park K-Y, Oh K-S, et al. The use of carbon/dielectric fiber woven fabrics as filters for electromagnetic radiation. Carbon N Y. 2009;47(8):1896–1904.
  • Yang J, Pang Y, Wang J, et al. Achieving broadband RCS reduction using carbon fiber connected composite via scattering mechanism. Compos Sci Technol. 2020;200:108410, doi:10.1016/j.compscitech.2020.108410
  • Pang Y, Li Y, Wang J, et al. Carbon fiber assisted glass fabric composite materials for broadband radar cross section reduction. Compos Sci Technol. 2018;158:19–25. doi:10.1016/j.compscitech.2018.02.001
  • Zuo W, Yang Y, He X, et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range. Antennas Wirel Propag Lett. 2017;16:928–931. doi:10.1109/LAWP.2016.2614703
  • Huang L, Duan Y, Dai X, et al. Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small. 2019;15(40):1902730, doi:10.1002/smll.201902730
  • Tian X, Todoroki A, Liu T, et al. 3D printing of continuous fiber reinforced polymer composites: development, application, and prospective. Chinese J Mechan Eng: Addit Manufact Front. 2022;1(1):100016, doi:10.1016/j.cjmeam.2022.100016
  • Khosravani MR, Frohn-Sörensen P, Reuter J, et al. Fracture studies of 3D-printed continuous glass fiber reinforced composites. Theor Appl Fract Mech. 2022;119:103317, doi:10.1016/j.tafmec.2022.103317
  • Hao W, Liu Y, Zhou H, et al. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym Test. 2018;65:29–34. doi:10.1016/j.polymertesting.2017.11.004
  • Khosravani MR, Soltani P, Weinberg K, et al. Structural integrity of adhesively bonded 3D-printed joints. Polym Test. 2021;100:107262, doi:10.1016/j.polymertesting.2021.107262
  • Goh GD, Toh W, Yap YL, et al. Additively manufactured continuous carbon fiber-reinforced thermoplastic for topology optimized unmanned aerial vehicle structures. Compos Part B: Eng. 2021;216:108840, doi:10.1016/j.compositesb.2021.108840
  • Gardner M. Mathematical Games. Scientific American. 1976;235(6):124-133. doi:10.1038/scientificamerican1276-124
  • Hilbert D. Ueber die stetige Abbildung einer Line auf ein Flächenstück. Math Ann. 1891;38(3):459–460. doi:10.1007/BF01199431
  • Petroff M, Appel J, Rostem K, et al. A 3D-printed broadband millimeter wave absorber. Rev Sci Instrum. 2019;90(2):024701, doi:10.1063/1.5050781
  • Shang Y, Shen Z, Xiao S. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans Antennas Propagat. 2013;61(12):6022–6029. doi:10.1109/TAP.2013.2280836
  • Zheng L, Niu L, Wang T, et al. Integrated lightweight gradient honeycomb metastructure with microwave absorption and mechanical properties: analysis, design, and verification. Compos Struct. 2023;305:116464, doi:10.1016/j.compstruct.2022.116464
  • Gao X, Han X, Cao W-P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface. IEEE Trans Antennas Propagat. 2015;63(8):3522–3530. doi:10.1109/TAP.2015.2434392
  • Hou Y-C, Liao W-J, Tsai C-C, et al. Planar multilayer structure for broadband broad-angle RCS reduction. IEEE Trans Antennas Propagat. 2016;64(5):1859–1867. doi:10.1109/TAP.2016.2535164
  • Yang Z, Liang Q, Duan Y, et al. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical property. Compos Struct. 2021;274:114330, doi:10.1016/j.compstruct.2021.114330
  • Huang M, Wang L, Pei K, et al. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small. 2020;16(14):2000158, doi:10.1002/smll.202000158
  • Ding F, Cui Y, Ge X, et al. Ultra-broadband microwave metamaterial absorber. Appl Phys Lett. 2012;100(10):103506, doi:10.1063/1.3692178
  • Li M, Muneer B, Yi Z, et al. A broadband compatible multispectral metamaterial absorber for visible, near-infrared, and microwave bands. Adv Opt Mater. 2018;6(9):1701238, doi:10.1002/adom.201701238
  • Sheokand H, Ghosh S, Singh G, et al. Transparent broadband metamaterial absorber based on resistive films. J Appl Phys. 2017;122(10):105105, doi:10.1063/1.5001511