1,310
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Advancing the additive manufacturing of PLA-ZnO nanocomposites by fused filament fabrication

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Article: e2285418 | Received 03 Sep 2023, Accepted 12 Nov 2023, Published online: 06 Dec 2023

References

  • Bachtiar EO, Erol O, Millrod M, et al. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. J Mech Behav Biomed Mater. 2020;104:103649. doi:10.1016/j.jmbbm.2020.103649
  • International Organization for Standardization Standard/Technical Committee 261. ISO/ASTM 52900:2021. 2nd ed. International Organization for Standardization Standard, Switzerland, Geneva, 2021.
  • Izdebska-Podsiadły J. Materials for 3D printing. In: Izdebska-Podsiadły J, editor. Polymers for 3D printing: Methods, properties, and characteristics. 1st ed. San Diego, CA: Elsevier Science and Technology; 2022. p. 35–49.
  • Tao Y, Kong F, Li Z, et al. A review on voids of 3D printed parts by fused filament fabrication. J Mater Res Technol. 2021;15:4860–4879. doi:10.1016/j.jmrt.2021.10.108
  • Sola A. Materials requirements in fused filament fabrication: a framework for the design of next-generation 3D printable thermoplastics and composites. Macromol Mater Eng. 2022;307:2200197. doi:10.1002/mame.202200197
  • Maguire A, Pottackal N, Saadi MASR, et al. Additive manufacturing of polymer-based structures by extrusion technologies. Oxf Open Mater. 2021;1:itaa004. doi:10.1093/oxfmat/itaa004
  • Bayart M, Charlon S, Soulestin J. Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review. Polym. 2021;217:123440. doi:10.1016/j.polymer.2021.123440
  • Darling CJ, Curtis C, Sciacca BJ, et al. Fused filament fabrication of complex anatomical phantoms with infill-tunable image contrast. Addit Manuf. 2022;52:102695. doi:10.1016/j.addma.2022.102695
  • DeStefano V, Khan S, Tabada A. Applications of PLA in modern medicine. Eng Regen. 2020;1:76–87. doi:10.1016/j.engreg.2020.08.002
  • González-Henríquez CM, Sarabia-Vallejos MA, Hernandez JR. Antimicrobial polymers for additive manufacturing. Int J Mol Sci 2019;20:1210. doi:10.3390/ijms20051210
  • Gruber P, Hoppe V, Grochowska E, et al. Material extrusion-based additive manufacturing of poly(lactic acid) antibacterial filaments - A case study of antimicrobial properties. Polym. 2021;13:4337. doi:10.3390/polym13244337
  • Podstawczyk D, Skrzypczak D, Połomska X, et al. Preparation of antimicrobial 3D printing filament: in situ thermal formation of silver nanoparticles during the material extrusion. Polym Compos. 2020;41:4692–4705. doi:10.1002/pc.25743
  • Hamad K, Rehman Z. Review of recent advances in polylactic acid/TiO2 composites. Mater. 2019;12:3659. doi:10.3390/ma12223659
  • Sefidan AM. Novel silicon dioxide-based nanocomposites as an antimicrobial in poly(lactic acid) nanocomposites films. J Nanomed Res. 2018;3:65–70. doi:10.22034/nmrj.2018.02.002
  • Form Futura. Copper 3D PLActive. The Netherland: Form Futura [cited 2023 Aug 30]. Available from: https://formfutura.com/product/plactive/.
  • 3DXTECH. BioGuard antibacterial PLA. Michigan: 3DXTECH [cited 2023 Aug 30]. Available from: https://www.3dxtech.com/product/antibacterial-pla/.
  • Almatroudi A. Silver nanoparticles: synthesis: characterisation and biomedical applications. Open Life Sci. 2020;15:819–839. doi:10.1515/biol-2020-0094
  • Gudikandula K, Maringanti SC. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci. 2016;11:714–721. doi:10.1080/17458080.2016.1139196
  • Naz S, Gul A, Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 2020;14:1–13. doi:10.1049/iet-nbt.2019.0176
  • Hou J, Liu H, Wang L, et al. Molecular toxicity of metal oxide nanoparticles in Danio rerio. Environ Sci Technol. 2018;52:7996–8004. doi:10.1021/acs.est.8b01464
  • Anreddy RNR. Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicol Rep. 2018;5:903–904. doi:10.1016/j.toxrep.2018.08.022
  • Ridwan R, Rihayat T, Suryani S, et al. Combination of poly lactid acid zinc oxide nanocomposite for antimicrobial packaging application. IOP Conf. 2020;830:042018. doi:10.1088/1757-899X/830/4/042018
  • Kim SY, Karthika V, Gopinath K, et al. Poly(Lactic Acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials. Polym. 2019;11:1427. doi:10.3390/polym11091427
  • Rashedi SM, Ramin K, Abosaeed R, et al. Ovel PLA/ZnO nanofibrous nanocomposite loaded with tranexamic acid as an effective wound dressing: in vitro and in vivo assessment. Iran. J Biotechnol. 2021;19:38–47. doi:10.30498/IJB.2021.220458.2737
  • Chong WJ, Shen S, Li Y, et al. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties,: tissue engineering viability, and enhanced biocompatibility. Smart Mater Manuf. 2023;1:100004. doi:10.1016/j.smmf.2022.100004
  • Ghozali M, Triwulandari E, Meliana Y, et al. Thermal properties of polylactic acid/zinc oxide biocomposite films. AIP Conf Proc. 2018;2024:020032. doi:10.1063/1.5064318
  • Anžlovar A, Kržan A, Žagar E. Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing. Arab. J Chem. 2018;11:343–352. doi:10.1016/j.arabjc.2017.07.001
  • Murariu M, Benali S, Paint Y, et al. Adding value in production of multifunctional polylactide (PLA)–ZnO nanocomposite films through alternative manufacturing methods. Mol. 2021;26:2043. doi:10.3390/molecules26072043
  • Dadashi P, Babaei A, Abdolrasouli MH. Investigating the hydrolytic degradation of PLA/PCL/ZnO nanocomposites by using viscoelastic models. Polym Eng Sci. 2022;62:869–882. doi:10.1002/pen.25893
  • Benali S, Aouadi S, Dechief AL, et al. Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites. 2105;1:51. doi:10.1179/2055033214Y.0000000007
  • Shojaeiarani J, Bajwa D, Jiang L, et al. Insight on the influence of nano zinc oxide on the thermal,: dynamic mechanical, and flow characteristics of Poly(lactic acid)– zinc oxide composites. Polym Eng Sci. 2019;59:1242–1249. doi:10.1002/pen.25107
  • Murariu M, Doumbia A, Bonnaud L, et al. High-performance Polylactide/Zno nanocomposites designed for films and fibers with special end-use properties. Biomacromol. 2011;12:1762–1771. doi:10.1021/bm2001445
  • Rokbani H, Ajji A. Rheological properties of poly(lactic acid) solutions added with metal oxide nanoparticles for electrospinning. J Polym Environ. 2018;26:2555–2565. doi:10.1007/s10924-017-1155-6
  • Jayaramudu J, Das K, Sonakshi M, et al. Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. Int J Biol Macromol. 2014;64:428–434. doi:10.1016/j.ijbiomac.2013.12.034
  • Karim SFA, Jai J, Saiful NA, et al. Effect of different red palm oil volume on characteristics and degradation of polylactic acid/zinc oxide film. IOP Conf. 2021;1176:012002. doi:10.1088/1757-899X/1176/1/012002
  • Therias S, Larché JF, Bussière PO, et al. Photochemical behavior of Polylactide/ZnP nanocomposite films. Biomacromol. 2012;13:3283–3291. doi:10.1021/bm301071w
  • Arfat YA, Ahmed J, Al Hazza A, et al. Comparative effects of untreated and 3-methacryloxypropyltrimethoxysilane treated ZnO nanoparticle reinforcement on properties of polylactide-based nanocomposite films. Int J Biol Macromol. 2017;101:1041–1050. doi:10.1016/j.ijbiomac.2017.03.176
  • Mallakpour S, Madani M. Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly(amide-imide)/zinc oxide nanocomposite containing phenylalanine moieties. Bull Mater Sci. 2012;35:333–339. doi:10.1007/s12034-012-0304-8
  • Jamnongkan T, Jaroensuk O, Khankhuean A, et al. A Comprehensive evaluation of mechanical,: thermal, and antibacterial properties of PLA/ZnO nanoflower biocomposite filaments for 3D printing application. Polym. 2022;14:600. doi:10.3390/polym14030600
  • Kumar R, Singh R, Singh M, et al. ZnO nanoparticle-grafted PLA thermoplastic composites for 3D printing applications: tuning of thermal,: mechanical, morphological and shape memory effect. J Thermoplast Compos. 2020;35:799–825. doi:10.1177/0892705720925119
  • Singh M, Singh R, Kumar R, et al. On 3D-printed ZnO-reinforced PLA matrix composite: tensile,: thermal, morphological and shape memory characteristics. J Thermoplast Compos. 2022;35:1510–1153. doi:10.1177/0892705720935961
  • Junpha J, Wisitsoraat A, Prathumwan R, et al. Electronic tongue and cyclic voltammetric sensors based on carbon nanotube/polylactic composites fabricated by fused deposition modelling 3D printing. Mater Sci Eng. 2020;117:111319. doi:10.1016/j.msec.2020.111319
  • NatureWorks. Ingeo Biopolymer 3D850 Technical Data Sheet. Minnetonka: NatureWorks [cited 2023 Aug 30]. Available from: https://www.natureworksllc.com/~/media/Files/NatureWorks/Technical-Documents/Technical-Data-Sheets/TechnicalDataSheet_3D850_monofilament_pdf.pdf?la = en.
  • Micronisers. Nanosun Zinc oxide P99/30. Australia: Microniser [cited 2023 Aug 30]. Available from: https://www.micronisers.com/nanosun-zinc-oxide-p99-30/.
  • Sola A, Chong WJ, Simunec DP, et al. Open challenges in tensile testing of additively manufactured polymers: a literature survey and a case study in fused filament fabrication. Polym Test. 2022;117:107859. doi:10.1016/j.polymertesting.2022.107859
  • American Society for Testing and Materials. ASTM D3039/D3039M-08 Standard test method for tensile properties of polymer matrix composite materials. Pennsylvania (PA): ASTM; 2014.
  • Qi S, Gao X, Su Y, et al. Correlation between welding behavior and mechanical anisotropy of long chain polyamide 12 manufactured with fused filament fabrication. Polym. 2021;213:123318. doi:10.1016/j.polymer.2020.123318
  • Li W, Li L, Cao Y, et al. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomater. 2017;7:207. doi:10.3390/nano7080207
  • Hu Y, Hou X, Hu X, et al. Improvement in the mechanical and friction performance of poly(ether ether ketone) composites by addition of modificatory short carbon fibers and zinc oxide. High Perform Polym. 2017;30:643–656. doi:10.1177/0954008317723445
  • Zabihi O, Khayyam H, Fox BL, et al. Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling. New J Chem. 2015;39:2269–2278. doi:10.1039/C4NJ01768D
  • Chandran AM, Varun S, Karumuthil SC, et al. Zinc oxide nanoparticles coated with (3-Aminopropyl)triethoxysilane as additives for boosting the dielectric,: ferroelectric, and piezoelectric properties of poly(vinylidene fluoride) films for energy harvesting. ACS Appl Nano Mater. 2021;4:1798–1809. doi:10.1021/acsanm.0c03214
  • Noei H, Qiu H, Wang Y, et al. The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys Chem Chem Phys. 2008;10:7092–7709. doi:10.1039/B811029H
  • Ahangaran F, Navarchian AH. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: a review. Adv Colloid Interface Sci. 2020;286:102298. doi:10.1016/j.cis.2020.102298
  • Duong HP, Hung CH, Dao HC, et al. Modification of TiO2 nanotubes with 3-aminopropyl triethoxysilane and its performances in nanocomposite coatings. New J Chem. 2018;42:8745–8751. doi:10.1039/C8NJ00642C
  • Pasternack RM, Amy SR, Chabal YJ. Attachment of 3-(Aminopropyl)triethoxysilane on Silicon oxide surfaces: dependence on solution temperature. Langmuir. 2008;24:12963–12971. doi:10.1021/la8024827
  • Sándor M, Nistor CL, Szalontai G, et al. Aminopropyl-Silica hybrid particles as supports for humic acids immobilization. Materials (Basel). 2016;9:34. doi:10.3390/ma9010034
  • Marras SI, Zuburtikudis I, Panayiotou C. Solution casting versus melt compounding: effect of fabrication route on the structure and thermal behavior of poly(l-lactic acid) clay nanocomposites. J Mater Sci. 2010;45:6474–6480. doi:10.1007/s10853-010-4735-6
  • Ercan N, Durmus A, Kaşgöz A. Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. J Thermoplast Compos Mater. 2015;30:950–970. doi:10.1177/0892705715614068
  • Sharip NS, Ariffin H, Yasim-Anuar TA, et al. Melt- vs. Non-melt blending of complexly processable ultra-high molecular weight polyethylene/cellulose nanofiber bionanocomposite. Polym. 2021;13:404. doi:10.3390/polym13030404
  • Ke K, Wang Y, Liu XQ, et al. A comparison of melt and solution mixing on the dispersion of carbon nanotubes in a poly(vinylidene fluoride) matrix. Compos B Eng. 2012;43:1425–1432. doi:10.1016/j.compositesb.2011.09.007
  • Spinelli G, Lamberti P, Tucci V, et al. Morphological: rheological and electromagnetic properties of nanocarbon/poly(lactic) acid for 3D printing: solution blending vs. melt mixing. Materials (Basel). 2018;11:11. doi:10.3390/ma11112256
  • Sanchez JY, Iojoiu C, Alloin F, et al. Fuel cells – proton-exchange membrane fuel cells | Membranes: non-fluorinated. In: J Garche, editor.. Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier; 2009. p. 700–715.
  • Velghe I, Buffel B, Vandeginste V, et al. Review on the degradation of Poly(lactic acid) during melt processing. Polym. 2023;15:2047. doi:10.3390/polym15092047
  • Aldhafeeri T, Alotaibi M, Barry CF. Impact of melt processing conditions on the degradation of polylactic acid. Polym. 2022;14:2790. doi:10.3390/polym14142790
  • Qu M, Tu H, Amarante M, et al. Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. J Appl Polym Sci. 2014;131; doi:10.1002/app.40287
  • Puglisi R, Scamporrino AA, Dintcheva NT, et al. Photo- and water-degradation phenomena of ZnO bio-blend based on poly(lactic acid) and polyamide 11. Polym. 2023;15:1434. doi:10.3390/polym15061434
  • Narimissa E, Gupta RK, Kao N, et al. The comparison between the effects of solvent casting and melt intercalation mixing processes on different characteristics of polylactide-nanographite platelets composites. Polym Eng Sci. 2015;55:1560–1570. doi:10.1002/pen.23996
  • Rueda C, Vallejo I, Corea M, et al. Degradation study of poly(lactic-l (+)-co-glycolic acid) in chloroform. Rev Mex Ing Quim. 2015;14:813–827.
  • Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polym. 2011;3:1377–1397. doi:10.3390/polym3031377
  • Niaounakis M. Properties. In: Niaounakis M, editor. Biopolymers: processing and products. Oxford: William Andrew Publishing; 2015. p. 79–116.
  • Jasso-Gastinel CF, Soltero-Martínez JFA, Mendizábal E. Modifiable characteristics and applications. In: Jasso-Gastinel CF, Kenny JM, editors. Modification of polymer properties. Boston, MA: Elsevier; 2017. p. 1–21.
  • Becker H, Locascio LE. Polymer microfluidic devices. Talanta. 2002;56:267–287. doi:10.1016/S0039-9140(01)00594-X
  • Texas Instruments. Interpreting Unexpected Events and Transitions in DSC Results. TA Instrument [cited 2023 Aug 30]. Available from: https://www.tainstruments.com/pdf/literature/TA039.pdf.
  • Zhang J, Tashiro K, Tsuji H, et al. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromol. 2008;41:1352–1357. doi:10.1021/ma0706071
  • Clarkson CM, El Awad Azrak SM, Schueneman GT, et al. Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer. Polym. 2020;187:122101. doi:10.1016/j.polymer.2019.122101
  • Lizundia E, Penayo MC, Guinault A, et al. Impact of ZnO nanoparticle morphology on relaxation and transport properties of PLA nanocomposites. Polym Test. 2019;75:175–184. doi:10.1016/j.polymertesting.2019.02.009
  • Brady J, Dürig T, Lee PI, et al. Developing Solid Oral Dosage Forms. 2nd ed. Boston: Academic Press; 2017. p. 181–223.
  • Fukushima K, Tabuani D, Dottori M, et al. Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab. 2011;96:2120–2129. doi:10.1016/j.polymdegradstab.2011.09.018
  • Bussiere PO, Therias S, Gardette JL, et al. Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid). Phys Chem Chem Phys. 2012;14:12301–12308. doi:10.1039/C2CP41574G
  • Sahraeian R, Davachi SM, Heidari BS. The effect of nanoperlite and its silane treatment on thermal properties and degradation of polypropylene/nanoperlite nanocomposite films. Compos B: Eng. 2019;162:103–111. doi:10.1016/j.compositesb.2018.10.093
  • Gao B, Jiang Z, Zhao C, et al. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. J Membr Sci. 2015;492:230–241. doi:10.1016/j.memsci.2015.05.035
  • Carvalh JL, Cormier SL, Lin N, et al. Crystal growth rate in a blend of long and short polymer chains. Macromol. 2012;45:1688–1691. doi:10.1021/ma202429q
  • Northcutt LA, Orski SV, Migler KB, et al. Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polym. 2018;154:182–187. doi:10.1016/j.polymer.2018.09.018
  • Nonato RC, Mei LHI, Bonse BC, et al. Nanocomposites of PLA containing ZnO nanofibers made by solvent cast 3D printing: production and characterization. Eur Polym J. 2019;114:271–278. doi:10.1016/j.eurpolymj.2019.02.026
  • Keshavarzi S, Babaei A, Goudarzi A, et al. ZnO nanoparticles as chain elasticity reducer and structural elasticity enhancer: correlating the degradating role and localization of ZnO with the morphological and mechanical properties of PLA/PP/ZnO nanocomposite. Polym Adv Technol. 2019;30:1083–1095. doi:10.1002/pat.4542
  • Rodríguez-Tobías H, Morales G, Grande D. Improvement of mechanical properties and antibacterial activity of electrospun poly(d,l-lactide)-based mats by incorporation of ZnO-graft-poly(d,l-lactide) nanoparticles. Mater Chem Phys. 2016;182:324–331. doi:10.1016/j.matchemphys.2016.07.039
  • Tan MA, Yeoh CK, The PL, et al. Effect of zinc oxide suspension on the overall filler content of the PLA/ZnO composites and cPLA/ZnO composites. E-Polym. 2023;23:231–236. doi:10.1515/epoly-2022-8113
  • Mat Yazik MH, Sultan MTH, Jawaid M, et al. Effect of nanofiller content on dynamic mechanical and thermal properties of multi-walled carbon nanotube and montmorillonite nanoclay filler hybrid shape memory epoxy composites. Polym. 2021;13:700. doi:10.3390/polym13050700
  • Pantani R, Gorrasi G, Vigliotta G, et al. PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J. 2103;49:3471–3482. doi:10.1016/j.eurpolymj.2013.08.005
  • Chu Z, Zhao T, Li L, et al. Characterization of antimicrobial poly (lactic acid)/nano-composite films with Silver and Zinc oxide nanoparticles. Materials (Basel). 2017;10:659. doi:10.3390/ma10060659
  • Silverajah VSG, Ibrahim NA, Yunus WMZW, et al. A comparative study on the mechanical,: thermal and morphological characterization of poly(lactic acid)/epoxidized palm oil blend. Int J Mol Sci. 2012;13:5878–5898. doi:10.3390/ijms13055878
  • Zeljković S, Balaban M, Gajić D, et al. Mechanochemically induced synthesis of N-ion doped ZnO: solar photocatalytic degradation of methylene blue. Green Chem Lett Rev. 2022;15:869–880. doi:10.1080/17518253.2022.2108343
  • Aragaw SG, Sabir FK, Andoshe DM, et al. Green synthesis of p-CO3O4/n-ZnO composite catalyst with Eichhornia Crassipes plant extract mediated for methylene blue degradation under visible light irradiation. Mater Res Express. 2020;7:095508. doi: 10.1088/2053-1591/abb90e
  • Tarani E, Arvanitidis I, Christofilos D, et al. Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study. J Mater Sci. 2023;58:1621–1639. doi:10.1007/s10853-022-08125-4
  • Kong Y, Hay JN. The measurement of the crystallinity of polymers by DSC. Polym. 2002;43:3873–3878. doi:10.1016/S0032-3861(02)00235-5
  • Raval N, Maheshwari R, Kalyane D, et al. Copolymers and block copolymers in drug delivery and therapy. In: Tekade RK, editor. Basic fundamentals of drug delivery. London, England: Academic Press; 2019. p. 369–400.
  • Doumeng M, Makhlouf L, Berthet F, et al. A comparative study of the crystallinity of polyetheretherketone by using density: DSC, XRD, and Raman spectroscopy techniques. Polym Test. 2021;93:106878. doi:10.1016/j.polymertesting.2020.106878
  • Arrigo R, Frache A. FDM printability of PLA based-materials: the key role of the rheological behavior. Polym. 2022;14:1754. doi:10.3390/polym14091754
  • Abdulridha SA. High sensitivity photoconductive for ZnO:MgO nanoparticles. Energy Procedia. 2019;157:355–361. doi:10.1016/j.egypro.2018.11.200
  • Kimbell G, Azad MA. 3D printing: Bioinspired materials for drug delivery. In: Nurunnabi Md, editor. Bioinspired and biomimetic materials for drug delivery. San Diego, CA: Elsevier Science and Technology; 2021. p. 295–318.
  • Pigeonneau F, Xu D, Vincent M, et al. Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer. Addit Manuf. 2020;32:101001. doi:10.1016/j.addma.2019.101001
  • Dealy JM, Wissbrun KF. Linear viscoelasticity. In: Dealy JM, Wissbrun KF, editors. Melt rheology and its role in plastics processing. New York: Springer; 2013. p. 42–102.
  • Crow Polymer Database. Flow properties of polymers. Crow polymer database [cited 2023 Aug 30]. Available from: https://polymerdatabase.com/polymer%20physics/Viscosity2.html.
  • Osman MA, Atallah A. Interparticle and particle–matrix interactions in polyethylene reinforcement and viscoelasticity. Polym. 2005;46:9476–9488. doi:10.1016/j.polymer.2005.07.030
  • Roland CM. Reinforcement of elastomers. In: Hashmi S, editor. Reference module in materials science and materials engineering. Amsterdam, Netherlands: Elsevier; 2016. p. 1–9.
  • Donnet JB. Black and white fillers and tire compound. Rubber Chem Technol. 1998;71:323–341. https://api.semanticscholar.org/CorpusID:137523645
  • Saha S, Bhowmick AK. Effect of structure development on the rheological properties of PVDF/HNBR-based thermoplastic elastomer and its vulcanizates. J Appl Polym Sci. 2020;137:48758. doi:10.1002/app.48758
  • Taghavimehr M, Navid Famili MH, Shirsavar MA. Effect of nanoparticle network formation on electromagnetic properties and cell morphology of microcellular polymer nanocomposite foams. Polym Test. 2020;86:106469. doi:10.1016/j.polymertesting.2020.106469
  • Lee KP, Brandt M, Shanks R, et al. Rheology and 3D printability of percolated graphene–polyamide-6 composites. Polym. 2020;12:2014. doi:10.3390/polym12092014
  • Carreau PJ, Vergnes B. Rheological characterization of fiber suspensions and nanocomposites. In: Chinesta F, Ausias G, editors. Rheology of non-spherical particle suspensions. London, England: Elsevier Science; 2015. p. 19–58.
  • Sun L, Boo WJ, Liu J, et al. Effect of nanoplatelets on the rheological behavior of epoxy monomers. Macromol Mater Eng. 2009;294:103–113. doi:10.1002/mame.200800258
  • Mahi H, Wilhelm M, Rodrigue D. A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol. 2014;53:869–882. doi:10.1007/s00397-014-0804-0
  • Palacios-Aguilar E, Bonilla-Rios J, Sanchez-Fernandez V-MA, et al. Comparing the elasticity of the melt and electrical conductivity of the solid of PP-HDPE copolymer CNT composites obtained by direct compounding versus dilution of a PP masterbatch. J Intell Mater Syst Struct. 2021;32:1105–1115. doi:10.1177/1045389×20969836
  • Mun SC, Kim M, Prakashan K, et al. A new approach to determine rheological percolation of carbon nanotubes in microstructured polymer matrices. Carbon N Y. 2014;67:64–67. doi:10.1016/j.carbon.2013.09.056
  • Pang M, Zuo Q, Cao B, et al. Understanding the role of a silane-coupling agent in bio-based polyurethane nanocomposite-coated fertilizers. ACS Omega. 2021;6:32663–32670. doi:10.1021/acsomega.1c04348
  • Zhu Z, Thompson T, Wang SQ, et al. Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromol. 2005;38:8816–8824. doi:10.1021/ma050922s
  • Morris BA. Commonly used resins and substrates in flexible packaging. In: Morris BA, editor. The science and technology of flexible packaging. Oxford: William Andrew Publishing; 2017. p. 69–119.
  • Liao Y, Liu C, Coppola B, et al. Effect of porosity and crystallinity on 3d printed PLA properties. Polym. 2019;11:1487. doi:10.3390/polym11091487
  • Wang X, Zhao L, Fuh JY, et al. Effect of porosity on mechanical properties of 3d printed polymers: experiments and micromechanical modeling based on X-ray computed tomography analysis. Polym. 2019;11:1154. doi:10.3390/polym11071154
  • Astakhov VP. Mechanical properties of engineering materials: relevance in design and manufacturing. In: Davim JP, editor. Introduction to mechanical engineering. 1st ed. Cham: Springer; 2018. p. 3–41
  • Cree D, Soleimani M. Bio-based white eggshell as a value-added filler in poly(lactic acid) composites. J Compos Sci. 2023;7:278. doi:10.3390/jcs7070278
  • Murariu M, Paint Y, Murariu O, et al. Current progress in the production of PLA–ZnO nanocomposites: beneficial effects of chain extender addition on key properties. J Appl Polym Sci. 2015;132; doi:10.1002/app.42480
  • Chen ZY, Shao WZ, Li WJ, et al. Suppressing the agglomeration of ZnO nanoparticles in air by doping with lower electronegativity metallic ions: implications for Ag/ZnO electrical contact composites. ACS Appl Nano Mater. 2022;5:10809–10817. doi:10.1021/acsanm.2c02129
  • Nunes RW, Martin JR, Johnson JF. Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polym Eng Sci. 1982;22:205–228. doi:10.1002/pen.760220402
  • Deshoulles Q, Le Gall M, Dreanno C, et al. Origin of embrittlement in Polyamide 6 induced by chemical degradations: mechanisms and governing factors. Polym Degrad Stab. 2021;191:109657. doi:10.1016/j.polymdegradstab.2021.109657
  • Levenhagen NP, Dadmun MD. Bimodal molecular weight samples improve the isotropy of 3D printed polymeric samples. Polym. 2017;122:232–241. doi:10.1016/j.polymer.2017.06.057