1,053
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling and application of droplet oscillation momentum for elucidating the development of surface roughness in wire-arc additive manufacturing

ORCID Icon, ORCID Icon, , , ORCID Icon, , , & show all
Article: e2286510 | Received 17 Aug 2023, Accepted 12 Nov 2023, Published online: 06 Dec 2023

References

  • Huan P-C, Wang X-N, Zhang Q-Y, et al. Study on droplet transition behavior, bead geometric characteristics and formability of wire + arc additively manufactured Inconel 718 alloy by using CMT MIX+ Synchropulse process. J Mat Res Technol. 2022;17:1831–1841. doi: 10.1016/j.jmrt.2022.01.153
  • Vora J, Parmar H, Chaudhari R, et al. Experimental investigations on mechanical properties of multi-layered structure fabricated by GMAW-based WAAM of SS316L. J Mat Res Technol. 2022;20:2748–2757. doi: 10.1016/j.jmrt.2022.08.074
  • Chen Z, Han C, Gao M, et al. A review on qualification and certification for metal additive manufacturing. Virtual Phys Prototyp. 2022;17(2):382–405. doi: 10.1080/17452759.2021.2018938
  • Xiong J, Yin Z, Zhang W. Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. J Mater Process Technol. 2016;233:100–106. doi: 10.1016/j.jmatprotec.2016.02.021
  • Zhu L, Wang S, Lu H, et al. Investigation on synergism between additive and subtractive manufacturing for curved thin-walled structure. Virtual Phys Prototyp. 2022;17(2):220–238. doi: 10.1080/17452759.2022.2029009
  • Laghi V, Palermo M, Gasparini G, et al. On the influence of the geometrical irregularities in the mechanical response of wire-and-arc additively manufactured planar elements. J Constr Steel Res. 2021;178:106490. doi: 10.1016/j.jcsr.2020.106490
  • Xia C, Pan Z, Polden J, et al. A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system. J Manuf Syst. 2020;57:31–45. doi: 10.1016/j.jmsy.2020.08.008
  • Pattanayak S, Sahoo SK. Gas metal arc welding based additive manufacturing—a review. CIRP J Manuf Sci Technol. 2021;33:398–442. doi: 10.1016/j.cirpj.2021.04.010
  • Xiong J, Li Y, Li R, et al. Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. J Mater Process Technol. 2018;252:128–136. doi: 10.1016/j.jmatprotec.2017.09.020
  • Hauser T, Reisch RT, Breese PP, et al. Oxidation in wire arc additive manufacturing of aluminium alloys. Addit Manuf. 2021;41:101958. doi: 10.1016/j.addma.2021.101958
  • Huang Y, Wu D, Zhang Z, et al. EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA-SVM. J Mater Process Technol. 2017;239:92–102. doi: 10.1016/j.jmatprotec.2016.07.015
  • Pal K, Bhattacharya S, Pal SK. Investigation on arc sound and metal transfer modes for on-line monitoring in pulsed gas metal arc welding. J Mat Proc Technol. 2010;210(10):1397–1410. doi: 10.1016/j.jmatprotec.2010.03.029
  • Bhattacharya S, Pal K, Pal SK. Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models. Appl Soft Comput. 2012;12(1):498–505. doi.org/10.1016/j.asoc.2011.08.016
  • Surovi NA, Soh GS. Acoustic feature based geometric defect identification in wire arc additive manufacturing. Virtual Phys Prototyp. 2023;18(1):e2210553. doi: 10.1080/17452759.2023.2210553
  • Xiong J, Zhang G, Qiu Z, et al. Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing. J Clean Prod. 2013;41:82–88. doi: 10.1016/j.jclepro.2012.10.009
  • Xiong J, Zhang G. Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol. 2014;214(4):962–968. doi: 10.1016/j.jmatprotec.2013.11.014
  • Zhan Q, Liang Y, Ding J, et al. A wire deflection detection method based on image processing in wire + arc additive manufacturing Int J Adv Manuf Technol. 2017;89(1-4):755–763. doi: 10.1007/s00170-016-9106-2.
  • Diao C, Ding J, Williams S, et al. A passive imaging system for geometry measurement for the plasma arc welding process. IEEE Trans Ind Electron. 2017;64(9):7201–7209. doi: 10.1109/TIE.2017.2686349
  • Bonaccorso F, Cantelli L, Muscato G. An arc welding robot control for a shaped metal deposition plant: Modular software interface and sensors. IEEE Trans Ind Electron. 2011;58(8):3126–3132. doi: 10.1109/TIE.2011.2114311
  • Yang D, Wang G, Zhang G. Thermal analysis for single-pass multi-layer GMAW based additive manufacturing using infrared thermography. J Mater Process Technol. 2017;244:215–224. doi: 10.1016/j.jmatprotec.2017.01.024
  • Tang S, Wang G, Zhang H, et al. An online surface defects detection system for AWAM based on deep learning. Paper Presented at the 2017 International Solid Freeform Fabrication Symposium. 2017.
  • Doumanidis C, Kwak Y-M. Multivariable adaptive control of the bead profile geometry in gas metal arc welding with thermal scanning. Int J Press Vessels Pip. 2002;79(4):251–262. doi: 10.1016/S0308-0161(02)00024-8
  • Gao X, Wang Y, Chen Z, et al. Analysis of welding process stability and weld quality by droplet transfer and explosion in MAG-laser hybrid welding process. J Manuf Process. 2018;32:522–529. doi: 10.1016/j.jmapro.2018.03.024
  • Zhang X, Gao H, Li Z. Forces analysis of droplets and accurate control of metal transfer in GMAW by utilizing droplet resonance. J Manuf Process. 2021;70:121–131. doi: 10.1016/j.jmapro.2021.08.028
  • Yudodibroto BYB, Hermans MJM, Hirata Y, et al. Pendant droplet oscillation during GMAW. Sci Technol Weld Joining. 2006;11(3):308–314. doi: 10.1179/174329306X101409
  • Ersoy U, Kannatey-Asibu E, Hu SJ. Analytical modeling of metal transfer for GMAW in the globular mode. J Manuf Sci Eng. 2008;130(6). doi: 10.1115/1.3006317
  • Wu CS, Chen MA, Li SK. Analysis of excited droplet oscillation and detachment in active control of metal transfer. Comput Mat Sci. 2004;31(1-2):147–154. doi: 10.1016/j.commatsci.2004.02.002
  • Xiao J, Zhang GJ, Zhang WJ, et al. Active metal transfer control by utilizing enhanced droplet oscillation part 1: experimental study. Weld J. 2014;93(8):282–291.
  • Chang YL, Liu XL, Lu L, et al. Impacts of external longitudinal magnetic field on arc plasma and droplet during short-circuit GMAW. Int J Adv Manuf Technol. 2014;70:1543–1553. doi: 10.1007/s00170-013-5403-1
  • Wong Y-R, Ling S-F. An investigation of dynamical metal transfer in GMAW—Effects of argon shielding gas. J Mater Process Technol. 2014;214(1):106–111. doi: 10.1016/j.jmatprotec.2013.08.003
  • Murphy AB. A self-consistent three-dimensional model of the arc, electrode and weld pool in gas–metal arc welding. J Phys D Appl Phys. 2011;44(19):194009), doi: 10.1088/0022-3727/44/19/194009.
  • Sun J-S, Wu C-S. The influence of arc pressure on the MIG weldpool dimensions. Acta Metall Sin (China). 2001;37(4):434–438.
  • Zhang Y, Chen Y, Li P, et al. Weld deposition-based rapid prototyping: a preliminary study. J Mater Process Technol. 2003;135(2-3):347–357. doi: 10.1016/S0924-0136(02)00867-1
  • Xiao J, Zhang GJ, Zhang WJ, et al. Active metal transfer control by utilizing enhanced droplet oscillation part II: modeling and analysis. Weld J. 2014;93(8):321–330.
  • Zhang X, Gao H, Zhang G. Current-independent metal transfer by utilizing droplet resonance in gas metal arc welding. J Mater Process Technol. 2020;279:116571. doi: 10.1016/j.jmatprotec.2019.116571
  • Jones LA, Eagar TW, Lang JH. Magnetic forces acting on molten drops in gas metal arc welding. J Phys D Appl Phys. 1998;31(1):93), doi: 10.1088/0022-3727/31/1/013
  • Kim YS, Eagar TW. Aip conference proceedings. Welding J. 2019;2133:030019. doi: 10.1063/1.5114003.
  • Choi JH, Lee J, Yoo CD. Dynamic force balance model for metal transfer analysis in arc welding. J Phys D Appl Phys. 2001;34(17):2658. doi: 10.1088/0022-3727/34/17/313.
  • Lesnewich A. Control on melting rate and metal transfer in gas shielding metal arc welding. Weld. J. 1958;37(8):343–353.
  • Guan Q. Generalized additive manufacturing based on welding/joining technologies. Автоматическая сварка. 2013;2013(10-11):33–37.
  • Scotti A, Ponomarev V, Lucas W. A scientific application oriented classification for metal transfer modes in GMA welding. J Mat Proc Technol. 2012;212(6):1406–1413. doi: 10.1016/j.jmatprotec.2012.01.021
  • Lv X, Wang Z, Su H, et al. Analysis of droplet growth of positive and negative electrode on cold metal transfer welding of aluminum wire. J Manuf Process. 2022;78:330–340. doi: 10.1016/j.jmapro.2022.04.026
  • Besl PJ, McKay ND. Method for registration of 3-D shapes. Paper presented at the Sensor fusion IV: control paradigms and data structures, 1992.
  • Kozjek D, Porter C, Carter FM, et al. Iterative closest point-based data fusion of non-synchronized in-situ and ex-situ data in laser powder bed fusion. J Manuf Syst. 2023;66:179–199. doi: 10.1016/j.jmsy.2022.12.007
  • Nair SA, Sant G, Neithalath N. Mathematical morphology-based point cloud analysis techniques for geometry assessment of 3D printed concrete elements. Addit Manuf. 2022;49:102499. doi: 10.1016/j.addma.2021.102499.
  • Wu B, Ding D, Pan Z, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V J Mater Process Technol. 2017;250:304–312. doi: 10.1016/j.jmatprotec.2017.07.037
  • Zhou S, Xie H, Ni J, et al. Metal transfer behavior during CMT-based Wire Arc Additive Manufacturing of Ti-6Al-4V alloy. J Manuf Process. 2022;82:159–173. doi: 10.1016/j.jmapro.2022.07.063
  • Cheon J, Venkata Kiran D, Na S-J. CFD based visualization of the finger shaped evolution in the gas metal arc welding process. Int J Heat Mass Transf. 2016;97:1–14. doi: 10.1016/j.ijheatmasstransfer.2016.01.067
  • Cadiou S, Courtois M, Carin M, et al. 3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam). Addit Manuf. 2020;36:101541. doi: 10.1016/j.addma.2020.101541
  • Cao H, Huang R, Yi H, et al. Asymmetric molten pool morphology in wire-arc directed energy deposition: Evolution mechanism and suppression strategy. Addit Manuf. 2022;59:103113), doi: 10.1016/j.addma.2022.103113.
  • Chen J, Schwenk C, Wu CS, et al. Predicting the influence of groove angle on heat transfer and fluid flow for new gas metal arc welding processes. Int J Heat Mass Transf. 2012;55(1-3):102–111. doi: 10.1016/j.ijheatmasstransfer.2011.08.046
  • Cho D-W, Song W-H, Cho M-H, et al. Analysis of submerged arc welding process by three-dimensional computational fluid dynamics simulations. J Mater Process Technol. 2013;213(12):2278–2291. doi: 10.1016/j.jmatprotec.2013.06.017
  • Zhou X, Zhang H, Wang G, et al. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing. Int J Heat Mass Transf. 2016;103:521–537. doi: 10.1016/j.ijheatmasstransfer.2016.06.084
  • Arif N, Lee JH, Yoo CD. Modelling of globular transfer considering momentum flux in GMAW. J Phys D Appl Phys. 2008;41(19):195503. doi: 10.1088/0022-3727/41/19/195503