1,018
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Direct wire writing technique benefitting the flexible electronics

, , , &
Article: e2286514 | Received 19 Sep 2023, Accepted 13 Nov 2023, Published online: 06 Dec 2023

References

  • Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun. 2018;9(1):244. doi:10.1038/s41467-017-02685-9
  • Yang Y, Chiesura G, Plovie B, et al. Design and integration of flexible sensor matrix for in situ monitoring of polymer composites. ACS Sens. 2018;3(9):1698–1705. doi:10.1021/acssensors.8b00425
  • Lanzara G, Salowitz N, Guo Z, et al. A spider-web-like highly expandable sensor network for multifunctional materials. Adv Mater. 2010;22(41):4643–4648. doi:10.1002/adma.201000661
  • Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater. 2017;29(27):1606425. doi:10.1002/adma.201606425
  • Hong H, Hu J, Moon K-S, et al. Rheological properties and screen printability of UV curable conductive ink for flexible and washable E-textiles. J Mater Sci Technol. 2021;67:145–155. doi:10.1016/j.jmst.2020.06.033
  • Huang H, Chu X, Su H, et al. Massively manufactured paper-based all-solid-state flexible micro-supercapacitors with sprayable MXene conductive inks. J Power Sources. 2019;415:1–7. doi:10.1016/j.jpowsour.2019.01.044
  • Hyun WJ, Secor EB, Hersam MC, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater. 2015;27(1):109–115. doi:10.1002/adma.201404133
  • Kwon J, DelRe C, Kang P, et al. Conductive ink with circular life cycle for printed electronics. Adv Mater. 2022;34(30):2202177. doi:10.1002/adma.202202177
  • Jia L, Zhou C, Sun W, et al. Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem Eng J. 2020;384:123368. doi:10.1016/j.cej.2019.123368
  • Chen H, Zhang Y, Ma Y, et al. Sand-milling exfoliation of structure controllable graphene for formulation of highly conductive and multifunctional graphene inks. Adv Mater Interfaces. 2021;8(1):2000888. doi:10.1002/admi.202000888
  • Mahajan A, Frisbie CD, Francis LF. Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Appl Mater Interfaces. 2013;5(11):4856–4864. doi:10.1021/am400606y
  • Nie X, Wang H, Zou J. Inkjet printing of silver citrate conductive ink on PET substrate. Appl Surf Sci. 2012;261:554–560. doi:10.1016/j.apsusc.2012.08.054
  • Zhang R, Peng B, Yuan Y. Flexible printed humidity sensor based on poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance. Compos Sci Technol. 2018;168:118–125. doi:10.1016/j.compscitech.2018.09.013
  • Tian B, Yao W, Zeng P, et al. All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J Mater Chem C. 2019;7(4):809–818. doi:10.1039/C8TC04753G
  • Li M, Yu P, Guo Z, et al. High-resolution and programmable line-morphologies of material-extrusion 3D printed self-leveling inks. Addit Manuf. 2023;71:103582. doi:10.1016/j.addma.2023.103582
  • Hong H, Hu J, Yan X. Uv curable conductive Ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags. ACS Appl Mater Interfaces. 2019;11(30):27318–27326. doi:10.1021/acsami.9b06432
  • Peng X, Kuang X, Roach DJ, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit Manuf. 2021;40:101911. doi:10.1016/j.addma.2021.101911
  • Zhou J, Yan H, Wang C, et al. 3D printing highly stretchable conductors for flexible electronics with low signal hysteresis. Virtual Phys Prototyp. 2022;17(1):19–32. doi:10.1080/17452759.2021.1980283
  • Tang K, Ma H, Tian Y, et al. 3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours. Virtual Phys Prototyp. 2020;15(sup1):511–519. doi:10.1080/17452759.2020.1842619
  • Peng S, Thirunavukkarasu N, Chen J, et al. Vat photopolymerization 3D printing of transparent, mechanically robust, and self-healing polyurethane elastomers for tailored wearable sensors. Chem Eng J. 2023;463:142312. doi:10.1016/j.cej.2023.142312
  • Peng S, Wang Z, Lin J, et al. Tailored and highly stretchable sensor prepared by crosslinking an enhanced 3D printed UV-curable sacrificial mold. Adv Funct Mater. 2021;31(10):2008729. doi:10.1002/adfm.202008729
  • Peng S, Guo Q, Thirunavukkarasu N, et al. Tailoring of photocurable ionogel toward high resilience and low hysteresis 3D printed versatile porous flexible sensor. Chem Eng J. 2022;439:135593. doi:10.1016/j.cej.2022.135593
  • Wang Z, Gao W, Zhang Q, et al. 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors. ACS Appl Mater Interfaces. 2019;11(1):1344–1352. doi:10.1021/acsami.8b16139
  • Huang K, Dong S, Yang J, et al. Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity. Carbon N Y. 2019;143:63–72. doi:10.1016/j.carbon.2018.11.008
  • Guo Z, Xu J, Chen Y, et al. High-sensitive and stretchable resistive strain gauges: parametric design and DIW fabrication. Compos Struct. 2019;223:110955. doi:10.1016/j.compstruct.2019.110955
  • Kim C, Sullivan C, Hillstrom A, et al. Intermittent embedding of wire into 3D prints for wireless power transfer. Int J Precis Eng Manuf. 2021;22:919–931. doi:10.1007/s12541-021-00508-y
  • Goh GL, Goh GD, Nguyen VP, et al. A 3D printing-enabled artificially innervated smart soft gripper with variable joint stiffness. Adv Mater Technol; 2023::2301426. doi:10.1002/admt.202301426
  • Billah KMM, Coronel JL, Halbig MC, et al. Electrical and thermal characterization of 3D printed thermoplastic parts with embedded wires for high current-carrying applications. IEEE Access. 2019;7:18799–18810. doi:10.1109/ACCESS.2019.2895620
  • Xu H, Zheng W, Wang Y, et al. Flexible tensile strain-pressure sensor with an off-axis deformation-insensitivity. Nano Energy. 2022;99:107384. doi:10.1016/j.nanoen.2022.107384
  • Yu P, Qi L, Guo Z, et al. Arbitrary-shape-adaptable strain sensor array with optimized circuit layout via direct-ink-writing: scalable design and hierarchical printing. Mater Des. 2022;214:110388. doi:10.1016/j.matdes.2022.110388
  • Scidà A, Haque S, Treossi E, et al. Application of graphene-based flexible antennas in consumer electronic devices. Mater Today. 2018;21(3):223–230. doi:10.1016/j.mattod.2018.01.007
  • Xie Z, Avila R, Huang Y, et al. Flexible and stretchable antennas for biointegrated electronics. Adv Mater. 2020;32(15):1902767. doi:10.1002/adma.201902767
  • Lee YK, Kim J, Kim Y, et al. Room temperature electrochemical sintering of Zn microparticles and its use in printable conducting inks for bioresorbable electronics. Adv Mater. 2017;29(38):1702665. doi:10.1002/adma.201702665
  • Long H, Liang L, Wei Y. Failure characterization of solid structures based on an equivalence of cohesive zone model. Int J Solids Struct. 2019;163:194–210. doi:10.1016/j.ijsolstr.2019.01.008
  • Xu W, Wei Y. Influence of adhesive thickness on local interface fracture and overall strength of metallic adhesive bonding structures. Int J Adhes Adhes. 2013;40:158–167. doi:10.1016/j.ijadhadh.2012.07.012
  • Guo Z, Yu P, Liu Y, et al. High-precision resistance strain sensors of multilayer composite structure via direct ink writing: optimized layer flatness and interfacial strength. Compos Sci Technol. 2021;201:108530. doi:10.1016/j.compscitech.2020.108530
  • Guo Z, Yu P, Liu Y, et al. Pre-fatigue enhancing both long-term stability and sensitivity of direct-ink-writing printed sensors. Int J Fatigue. 2023;166:107237. doi:10.1016/j.ijfatigue.2022.107237
  • Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26(36):6307–6312. doi:10.1002/adma.201400334
  • Wu Q, Zhu F, Wu Z, et al. Suspension printing of liquid metal in yield-stress fluid for resilient 3D constructs with electromagnetic functions. NPJ Flex Electron. 2022;6(1):50. doi:10.1038/s41528-022-00184-6
  • Sinha AK, Goh GL, Yeong WY, et al. Ultra-low-cost, crosstalk-free, fast-responding, wide-sensing-range tactile fingertip sensor for smart gloves. Adv Mater Interfaces. 2022;9(21):2200621. doi:10.1002/admi.202200621
  • Gao M, Li L, Song Y. Inkjet printing wearable electronic devices. J Mater Chem C. 2017;5(12):2971–2993. doi:10.1039/C7TC00038C
  • Jiang P, Ji Z, Zhang X, et al. Recent advances in direct ink writing of electronic components and functional devices. Prog Addit Manuf. 2018;3:65–86. doi:10.1007/s40964-017-0035-x
  • Li Z, Li H, Zhu X, et al. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv Sci. 2022;9(14):2105331. doi:10.1002/advs.202105331
  • Li H, Li Z, Li N, et al. 3D printed high performance silver mesh for transparent glass heaters through liquid sacrificial substrate electric-field-driven jet. Small. 2022;18(17):2107811. doi:10.1002/smll.202107811
  • Ren W, Xu J, Lian Z, et al. Localized electrodeposition micro additive manufacturing of pure copper microstructures. Int J Extrem Manuf. 2022;4(1):015101), doi:10.1088/2631-7990/ac3963
  • Seiti M, Ginestra PS, Ferraro RM, et al. Aerosol Jet® printing of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) onto micropatterned substrates for neural cells in vitro stimulation. Int J Bioprint. 2021;8(1). doi:10.18063/ijb.v8i1.504
  • Tan HW, Choong YYC, Kuo CN, et al. 3D printed electronics: processes, materials and future trends. Prog Mater Sci. 2022;127:100945. doi:10.1016/j.pmatsci.2022.100945
  • Gao H, An J, Chua CK, et al. 3D printed optics and photonics: processes, materials and applications. Mater Today. 2023. doi:10.1016/j.mattod.2023.06.019