1,412
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Grain refinement of NiTi alloys during ultrasound-assisted wire-arc directed energy deposition

, , , , &
Article: e2289465 | Received 15 Sep 2023, Accepted 25 Nov 2023, Published online: 10 Dec 2023

References

  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–360. doi:10.1080/09506608.2015.1116649
  • Debroy T, Mukherjee T, Wei HL, et al. Metallurgy, mechanistic models and machine learning in metal printing. Nat Rev Mater. 2021;6(1):48–68. doi:10.1038/s41578-020-00236-1
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. doi:10.1016/j.mattod.2021.03.020
  • Li Z, Sui S, Ma X, et al. High deposition rate powder- and wire-based laser directed energy deposition of metallic materials: a review. Int J Machine Tools Manuf. 2022;181:103942. doi:10.1016/j.ijmachtools.2022.103942
  • Sampaio RFV, Pragana JPM, Bragança IMF, et al. Modelling of wire-arc additive manufacturing – a review. Adv Industrial Manuf Eng. 2023;6:100121. doi:10.1016/j.aime.2023.100121
  • Bermingham MJ, Stjohn DH, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 2019;168:261–274. doi:10.1016/j.actamat.2019.02.020
  • Luo M, Li R, Zheng D, et al. Formation mechanism of inherent spatial heterogeneity of microstructure and mechanical properties of NiTi SMA prepared by laser directed energy deposition. Int J Extreme Manuf. 2023;5(3):035005. doi:10.1088/2631-7990/acd96f
  • Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci. 2016;83:630–663. doi:10.1016/j.pmatsci.2016.08.001
  • Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678. doi:10.1016/j.pmatsci.2004.10.001
  • Cao Y, Zhou X, Cong D, et al. Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys. Acta Mater. 2020;194:178–189. doi:10.1016/j.actamat.2020.04.007
  • Elahinia MH, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci. 2012;57(5):911–946. doi:10.1016/j.pmatsci.2011.11.001
  • Weinert K, Petzoldt V. Machining of NiTi based shape memory alloys. Mater Sci Eng A. 2004;378(1–2):180–184. doi:10.1016/j.msea.2003.10.344
  • Liu G, Zhou S, Lin P, et al. Analysis of microstructure, mechanical properties, and wear performance of NiTi alloy fabricated by cold metal transfer based wire arc additive manufacturing. J Mater Res Technol. 2022;20:246–259. doi:10.1016/j.jmrt.2022.07.068
  • Yu L, Chen K, Zhang Y, et al. Microstructures and mechanical properties of NiTi shape memory alloys fabricated by wire arc additive manufacturing. J Alloys Compd. 2022;892:16219. doi:10.1016/j.jallcom.2021.162193
  • Zeng Z, Cong BQ, Oliveira JP, et al. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: microstructure and mechanical properties. Addit Manuf. 2020;32:101051. doi:10.1016/j.addma.2020.101051
  • Feng Y, Liu B, Wan X, et al. Influence of processing parameter on phase transformation and superelastic recovery strain of laser solid forming NiTi alloy. J Alloys Compd. 2022;908:164568. doi:10.1016/j.jallcom.2022.164568
  • Wang J, Lin X, Li J, et al. A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti–6Al–4 V. Mater Sci Eng A. 2020;772:138703. doi:10.1016/j.msea.2019.138703
  • Wang J, Lin X, Wang J, et al. Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V. J Alloys Compd. 2018;768:97–113. doi:10.1016/j.jallcom.2018.07.235
  • Lu B, Cui X, Ma W, et al. Promoting the heterogeneous nucleation and the functional properties of directed energy deposited NiTi alloy by addition of La2O3. Addit Manuf. 2020;33:101150. doi:10.1016/j.addma.2020.101150
  • Lu B, Cui X, Jin G, et al. Effect of La2O3 addition on mechanical properties and wear behaviour of NiTi alloy fabricated by direct metal deposition. Optics Laser Technol. 2020;129:106290. doi:10.1016/j.optlastec.2020.106290
  • Todaro CJ, Easton MA, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun. 2020;11(1). doi:10.1038/s41467-019-13874-z
  • Du D, Haley JC, Dong A, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy. Mater Des. 2019;181:107923. doi:10.1016/j.matdes.2019.107923
  • Wang J, Pan Z, Carpenter K, et al. Comparative study on crystallographic orientation, precipitation, phase transformation and mechanical response of Ni-rich NiTi alloy fabricated by WAAM at elevated substrate heating temperatures. Mater Sci Eng A. 2021;800:140307. doi:10.1016/j.msea.2020.140307
  • Li X, Fang X, Zhang M, et al. Gradient microstructure and prominent performance of wire-arc directed energy deposited magnesium alloy via laser shock peening. Int J Mach Tools Manuf. 2023;188:104029. doi:10.1016/j.ijmachtools.2023.104029
  • Vorontsov A, Astafurov S, Melnikov E, et al. The microstructure, phase composition and tensile properties of austenitic stainless steel in a wire-feed electron beam melting combined with ultrasonic vibration. Mater Sci Eng A. 2021;820:141519. doi:10.1016/j.msea.2021.141519
  • Yi H, Wang Q, Zhang W, et al. Wire-arc directed energy deposited Mg-Al alloy assisted by ultrasonic vibration: improving properties via controlling grain structures. J Mater Process Technol. 2023;321:118134. doi:10.1016/j.jmatprotec.2023.118134
  • Yuan D, Shao S, Guo C, et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration. Ultrason Sonochem. 2021;73:105472. doi:10.1016/j.ultsonch.2021.105472
  • Zhang M, Duan Y, Fang X, et al. Tailoring the superelasticity of NiTi alloy fabricated by directed energy deposition through the variation of residual stress. Mater Des. 2022;224:111311. doi:10.1016/j.matdes.2022.111311
  • Zhang M, Fang X, Wang Y, et al. High superelasticity NiTi fabricated by cold metal transfer based wire arc additive manufacturing. Mater Sci Eng A. 2022;840:143001. doi:10.1016/j.msea.2022.143001
  • Zhan X, Wang Q, Wang L, et al. Regionalization of microstructure and mechanical properties of Ti6Al4 V transition area fabricated by WAAM-LMD hybrid additive manufacturing. J Alloys Cmpds. 2022;929:167345. doi:10.1016/j.jallcom.2022.167345
  • Xi N, Tang K, Fang X, et al. Enhanced comprehensive properties of directed energy deposited Inconel 718 by a novel integrated deposition strategy. J Mater Sci Technol. 2023;141:42–55. doi:10.1016/j.jmst.2022.09.026
  • Li X, Zhang M, Fang X, et al. Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2170252
  • Biscuola VB, Martorano MA. Mechanical blocking mechanism for the columnar to equiaxed transition. Metall Mater Trans A. 2008;39:2885–2895. doi:10.1007/s11661-008-9643-x
  • Khoo Z, Liu Y, An J, et al. A review of selective laser melted NiTi shape memory alloy. Materials (Basel). 2018;11(4):519. doi:10.3390/ma11040519
  • Gao S, Weng F, Bodunde OP, et al. Spatial characteristics of nickel-titanium shape memory alloy fabricated by continuous directed energy deposition. J Manuf Process. 2021;71:417–428. doi:10.1016/j.jmapro.2021.09.039
  • Lu B, Cui X, Liu E, et al. Influence of microstructure on phase transformation behavior and mechanical properties of plasma arc deposited shape memory alloy. Mater Sci Eng A. 2018;736:130–136. doi:10.1016/j.msea.2018.08.098
  • Li B, Wang B, Wang L, et al. Effect of post-heat treatments on the microstructure, martensitic transformation and functional performance of EBF3-fabricated NiTi shape memory alloy. Mater Sci Eng A. 2023;871:144897. doi:10.1016/j.msea.2023.144897
  • Lu HZ, Chen T, Liu LH, et al. Constructing function domains in NiTi shape memory alloys by additive manufacturing. Virtual Phys Prototyp. 2022;17(3):563–581. doi:10.1080/17452759.2022.2053821
  • Sutou Y, Omori T, Yamauchi K, et al. Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater. 2005;53(15):4121–4133. doi:10.1016/j.actamat.2005.05.013
  • Li B, Wang L, Wang B, et al. Solidification characterization and its correlation with the mechanical properties and functional response of NiTi shape memory alloy manufactured by electron beam freeform fabrication. Addit Manuf. 2021;48:102468. doi:10.1016/j.addma.2021.102468
  • Resnina N, Palani IA, Belyaev S, et al. Structure, martensitic transformations and mechanical behaviour of NiTi shape memory alloy produced by wire arc additive manufacturing. J Alloys Compd. 2021;851:156851. doi:10.1016/j.jallcom.2020.156851
  • Xue L, Atli KC, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework. Acta Mater. 2021;215:117017. doi:10.1016/j.actamat.2021.117017
  • Zuo X, Zhang W, Chen Y, et al. Wire-based directed energy deposition of NiTiTa shape memory alloys: microstructure, phase transformation, electrochemistry, X-ray visibility and mechanical properties. Addit Manuf. 2022;59:103115. doi:10.1016/j.addma.2022.103115
  • Hamilton RF, Bimber BA, Palmer TA. Correlating microstructure and superelasticity of directed energy deposition additive manufactured Ni-rich NiTi alloys. J Alloys Compd. 2018;739:712–722. doi:10.1016/j.jallcom.2017.12.270
  • Li B, Wang L, Wang B, et al. Tuning the microstructure, martensitic transformation and superelastic properties of EBF3-fabricated NiTi shape memory alloy using interlayer remelting. Mater Des. 2022;220:110886. doi:10.1016/j.matdes.2022.110886
  • Pu Z, Du D, Wang K, et al. Evolution of transformation behavior and tensile functional properties with process parameters for electron beam wire-feed additive manufactured NiTi shape memory alloys. Mater Sci Eng A. 2022;840:142977. doi:10.1016/j.msea.2022.142977
  • Pu Z, Du D, Wang K, et al. Microstructure, phase transformation behavior and tensile superelasticity of NiTi shape memory alloys fabricated by the wire-based vacuum additive manufacturing. Mater Sci Eng A. 2021;812:141077. doi:10.1016/j.msea.2021.141077
  • Pu Z, Du D, Zhang D, et al. Improvement of tensile superelasticity by aging treatment of NiTi shape memory alloys fabricated by electron beam wire-feed additive manufacturing. J Mater Sci Technol. 2023;145:185–196. doi:10.1016/j.jmst.2022.10.050
  • Xue L, Atli KC, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity. Acta Mater. 2022;229:117781. doi:10.1016/j.actamat.2022.117781
  • Wang X, He X, Wang T, et al. The influence of the microtexture and orientation of columnar grains on the fatigue crack growth of directed energy deposited Ti-6.5Al-2Zr-Mo-V alloys. Addit Manuf. 2020;35:101174. doi:10.1016/j.addma.2020.101174
  • Chen Y, Xu M, Zhang T, et al. Grain refinement and mechanical properties improvement of Inconel 625 alloy fabricated by ultrasonic-assisted wire and arc additive manufacturing. J Alloys Compd. 2022;910:164957. doi:10.1016/j.jallcom.2022.164957
  • Kang J, Zhang X, Wang S, et al. The comparison of ultrasonic effects in different metal melts. Ultrasonics. 2015;57:11–17. doi:10.1016/j.ultras.2014.10.004
  • Lu L, Jiang H, Bian Q, et al. Integrated modelling and simulation of NiTi alloy by powder bed fusion: single track study. Mater Des. 2023;227:111755. doi:10.1016/j.matdes.2023.111755
  • Fan Q, Chen C, Fan C, et al. Ultrasonic induces grain refinement in gas tungsten arc cladding AlCoCrFeNi high-entropy alloy coatings. Mater Sci Eng A. 2021;821:141607. doi:10.1016/j.msea.2021.141607
  • Jiao Z, Li Z, Wu F, et al. Phase transition, twinning, and spall damage of NiTi shape memory alloys under shock loading. Mater Sci Eng A. 2023;869:144775. doi:10.1016/j.msea.2023.144775
  • Zhang X, Kang J, Wang S, et al. The effect of ultrasonic processing on solidification microstructure and heat transfer in stainless steel melt. Ultrason Sonochem. 2015;27:307–315. doi:10.1016/j.ultsonch.2015.05.041
  • Qian M, Cao P, Easton MA, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction. Acta Mater. 2010;58(9):3262–3270. doi:10.1016/j.actamat.2010.01.052
  • Yuan D, Sun X, Sun L, et al. Improvement of the grain structure and mechanical properties of austenitic stainless steel fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration. Mater Sci Eng A. 2021;813:141177. doi:10.1016/j.msea.2021.141177
  • Wang F, Eskin D, Mi J, et al. A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35 Cu alloy induced by ultrasonic melt processing. Acta Mater. 2017;141:142–153. doi:10.1016/j.actamat.2017.09.010
  • Wang S, Kang J, Guo Z, et al. In situ high speed imaging study and modelling of the fatigue fragmentation of dendritic structures in ultrasonic fields. Acta Mater. 2019;165:388–397. doi:10.1016/j.actamat.2018.11.053
  • Polatidis E, Amíd M, Kuběna I, et al. Deformation mechanisms in a superelastic NiTi alloy: An in-situ high resolution digital image correlation study. Mater Des. 2020;191:108622. doi:10.1016/j.matdes.2020.108622
  • Chowdhury P, Sehitoglu H. A revisit to atomistic rationale for slip in shape memory alloys. Prog Mater Sci. 2017;85:1–42. doi:10.1016/j.pmatsci.2016.10.002
  • Zhu J, Liu K, Riemslag T, et al. Achieving superelasticity in additively manufactured Ni-lean NiTi by crystallographic design. Mater Des. 2023;230:111949. doi:10.1016/j.matdes.2023.111949
  • Kang LM, Cai YJ, Luo XC, et al. Bimorphic microstructure in Ti-6Al-4V alloy manipulated by spark plasma sintering and in-situ press forging. Scr Mater. 2021;193:43–48. doi:10.1016/j.scriptamat.2020.10.035
  • Luo X, Liu LH, Yang C, et al. Overcoming the strength–ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy. J Mater Sci Technol. 2021;68:112–123. doi:10.1016/j.jmst.2020.06.053
  • Stebner AP, Paranjape HM, Clausen B, et al. In situ neutron diffraction studies of large monotonic deformations of superelastic nitinol. Shape Memory Superelasticity. 2015;1(2):252–267. doi:10.1007/s40830-015-0015-2