985
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective optimisation of process parameters for laser-based directed energy deposition of a mixture of H13 and M2 steel powders on 4Cr5Mo2SiV1 steel

ORCID Icon, ORCID Icon, , &
Article: e2290184 | Received 06 Sep 2023, Accepted 06 Nov 2023, Published online: 08 Jan 2024

References

  • Markežič R, Naglič I, Mole N, et al. Experimental and numerical analysis of failures on a die insert for high pressure die casting. Eng Fail Anal. 2019;95(January):171–180. doi:10.1016/j.engfailanal.2018.09.010
  • Braga V, Siqueira RHM, Atilio I, et al. Microstructural and mechanical aspects of laser metal deposited H13 powder for die repair. Mater Today Commun. 2021;29(December):102945. doi:10.1016/j.mtcomm.2021.102945
  • Lee JC, Kang HJ, Chu WS, et al. Repair of damaged mold surface by cold-spray method. CIRP Ann. 2007;56(1):577–580. doi:10.1016/j.cirp.2007.05.138
  • Lu C-W, Wang H-S, Chen H-G, et al. Effects of heat treatment and Nd: YAG laser repair welding parameters on the microstructure and properties of a Cu–Ni–Si–Cr mold alloy. Mater Sci Eng A. 2021a;799(January):140342. doi:10.1016/j.msea.2020.140342
  • Cong D, Zhou H, Ren Z, et al. The thermal fatigue resistance of H13 steel repaired by a biomimetic laser remelting process. Mater Des. 2014;55(March):597–604. doi:10.1016/j.matdes.2013.09.076
  • Chen H, Lu Y, Sun Y, et al. Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding. Surf Coat Technol. 2020;395(August):125867. doi:10.1016/j.surfcoat.2020.125867
  • Lu H, Cai J, Luo K, et al. Thermal fatigue life and improvement mechanism of Fe-based coatings on H13 extrusion die by laser additive remanufacturing. Surf Coat Technol. 2021b;408(February):126808. doi:10.1016/j.surfcoat.2020.126808
  • Jhavar S, Paul CP, Jain NK. Causes of failure and repairing options for dies and molds: a review. Eng Fail Anal. 2013;34(December):519–535. doi:10.1016/j.engfailanal.2013.09.006
  • Preciado WT, Niño Bohorquez CE. Repair welding of polymer injection molds manufactured in AISI P20 and VP50IM steels. J Mater Process Technol. 2006;179(1–3):244–250. doi:10.1016/j.jmatprotec.2006.03.101
  • Wu H, Liu S, Xie X, et al. A framework for a knowledge based cold spray repairing system. J Intell Manuf. 2022;33(6):1639–1647. doi:10.1007/s10845-021-01770-7
  • Rabiey M, Schiesser P, Maerchy P. Direct metal deposition (DMD) for tooling repair of DIN 1.2343 steel. Procedia CIRP. 2020;95:23–28. doi:10.1016/j.procir.2020.01.151
  • Zhan X, Lin X, Gao Z, et al. Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of invar alloy. J Alloys Compd. 2018;755(July):123–134. doi:10.1016/j.jallcom.2018.04.313
  • Samei J, Asgari H, Pelligra C, et al. A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies. Addit Manuf. 2021;45(September):102068. doi:10.1016/j.addma.2021.102068
  • Franz M, Bliedtner J, Haupt C. Laser metal deposition welding in the field of tool and mould making. Procedia Eng. 2014;69:237–240. doi:10.1016/j.proeng.2014.02.227
  • Shah M, Patel DR, Pande S. Additive manufacturing integrated casting- A review. Mater Today Proc. 2022;62:7199–7203. doi:10.1016/j.matpr.2022.03.413
  • Zhang X, Sun C, Pan T, et al. Additive manufacturing of copper – H13 tool steel Bi-metallic structures via Ni-based multi-interlayer. Addit Manuf. 2020;36(December):101474. doi:10.1016/j.addma.2020.101474.
  • Kim RE, Kim ES, Karthik GM, et al. Heterostructured alloys with enhanced strength-ductility synergy through laser-cladding. Scr Mater. 2022;215(July):114732. doi:10.1016/j.scriptamat.2022.114732
  • Dang X, Li Y, Chen K, et al. Insight into the interfacial architecture of a hybrid additively- manufactured stainless steel/Ni-based superalloy bimetal. Mater Des. 2022;216(April):110595. doi:10.1016/j.matdes.2022.110595
  • Chen M, Van Petegem S, Zou Z, et al. Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed fusion. Addit Manuf. 2022;59(November):103173. doi:10.1016/j.addma.2022.103173
  • Fathi P, Rafieazad M, Mohseni-Sohi E, et al. Corrosion performance of additively manufactured bimetallic aluminum alloys. Electrochim Acta. 2021;389(September):138689. doi:10.1016/j.electacta.2021.138689
  • Yuan M, Karamchedu S, Fan Y, et al. Study of defects in directed energy deposited vanadis 4 extra tool steel. J Manuf Process. 2022;76(April):419–427. doi:10.1016/j.jmapro.2022.02.014
  • Fonseca EB, Gabriel AHG, Araújo LC, et al. Assessment of laser power and scan speed influence on microstructural features and consolidation of AISI H13 tool steel processed by additive manufacturing. Addit Manuf. 2020;34(August):101250. doi:10.1016/j.addma.2020.101250
  • Lee J, Choe J, Park J, et al. Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions. Mater Charact. 2019;155(September):109817. doi:10.1016/j.matchar.2019.109817
  • Zhang J, Yu M, Li Z, et al. The effect of laser energy density on the microstructure, residual stress and phase composition of H13 steel treated by laser surface melting. J Alloys Compd. 2021;856(March):158168. doi:10.1016/j.jallcom.2020.158168
  • Fatemi SA, Zamani Ashany J, Jalali Aghchai A, et al. Experimental investigation of process parameters on layer thickness and density in direct metal laser sintering: a response surface methodology approach. Virtual Phys Prototyp. 2017;12(2):133–140. doi:10.1080/17452759.2017.1293274
  • Basavarajappa M, Bhatta D. Heat and mass transfer of a molten polymer conveying nanoparticles in a wire coating process with temperature-dependent fluid properties: optimization using response surface method. Int Commun Heat Mass Transfer. 2022;133(April):105941. doi:10.1016/j.icheatmasstransfer.2022.105941
  • Gurrala PK, Regalla SP. Multi-Objective optimisation of strength and volumetric shrinkage of FDM parts. Virtual Phys Prototyp. 2014;9(2):127–138. doi:10.1080/17452759.2014.898851
  • Li R, Wang G, Ding Y, et al. Optimization of the geometry for the end lateral extension path strategy to fabricate intersections using laser and cold metal transfer hybrid additive manufacturing. Addit Manuf. 2020;36(December):101546. doi:10.1016/j.addma.2020.101546
  • Zhang H, Choi JP, Moon SK, et al. A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Addit Manuf. 2020;33(May):101096. doi:10.1016/j.addma.2020.101096
  • Shim D-s. Effects of process parameters on additive manufacturing of aluminum porous materials and their optimization using response surface method. J Mater Res Technol. 2021;15(November):119–134. doi:10.1016/j.jmrt.2021.08.010
  • Goodarzi DM, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry. Weld World. 2017;61(5):883–891. doi:10.1007/s40194-017-0495-0
  • Ashby MF, Easterling KE. The transformation hardening of steel surfaces by laser beams—I. hypo-eutectoid steels. Acta Metall. 1984;32(11):1935–1948. doi:10.1016/0001-6160(84)90175-5
  • Ma G, Liu X, Song C, et al. Ticp reinforced Ti6Al4V of follow-up synchronous electromagnetic induction-laser hybrid directed energy deposition: microstructure evolution and mechanical properties. Addit Manuf. 2022;59(November):103087. doi:10.1016/j.addma.2022.103087
  • Hao J, Hu F, Le X, et al. Microstructure and high-temperature wear behaviour of inconel 625 multi-layer cladding prepared on H13 mould steel by a hybrid additive manufacturing method. J Mater Process Technol. 2021;291(May):117036. doi:10.1016/j.jmatprotec.2020.117036
  • Wolff SJ, Lin S, Faierson EJ, et al. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4 V. Acta Mater. 2017;132(June):106–117. doi:10.1016/j.actamat.2017.04.027
  • Boccalini M, Goldenstein H. Solidification of high speed steels. Int Mater Rev. 2001;46(2):92–115. doi:10.1179/095066001101528411
  • Chaus AS, Bračík M, Sahul M, et al. Microstructure and properties of M2 high-speed steel cast by the gravity and vacuum investment casting. Vacuum. 2019;162(April):183–198. doi:10.1016/j.vacuum.2019.01.041
  • Xie J-y, Chen N-x, Shen J, et al. Atomistic study on the structure and thermodynamic properties of Cr7C3, Mn7C3, Fe7C3. Acta Mater. 2005;53(9):2727–2732. doi:10.1016/j.actamat.2005.02.039
  • Holzweissig MJ, Taube A, Brenne F, et al. Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall Mater Trans B. 2015;46(2):545–549. doi:10.1007/s11663-014-0267-9
  • Šafka J, Ackermann M, Voleský L. Structural properties of H13 tool steel parts produced with use of selective laser melting technology. J Phys Conf Ser. 2016;709(April):012004. doi:10.1088/1742-6596/709/1/012004
  • Tian Y, Chadha K, Kim SH, et al. Strengthening mechanisms in a heatvar hot work tool steel fabricated by laser powder bed fusion. Mater Sci Eng A. 2021;805(February):140801. doi:10.1016/j.msea.2021.140801
  • Åsberg M, Fredriksson G, Hatami S, et al. Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel. Mater Sci Eng A. 2019;742(January):584–589. doi:10.1016/j.msea.2018.08.046
  • Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts. Phys Procedia. 2016;83:882–890. doi:10.1016/j.phpro.2016.08.092
  • Azizi H, Ghiaasiaan R, Prager R, et al. Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting. Addit Manuf. 2019;27(May):389–397. doi:10.1016/j.addma.2019.03.025
  • Cyr E, Asgari H, Shamsdini S, et al. Fracture behaviour of additively manufactured MS1-H13 hybrid hard steels. Mater Lett. 2018;212(February):174–177. doi:10.1016/j.matlet.2017.10.097
  • Yang Y, Hu J, Liu XY, et al. Post treatment of an additively manufactured composite consisting of 304L stainless steel and CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2022;831(January):142104. doi:10.1016/j.msea.2021.142104
  • He H, Cheng S, Chen Y, et al. Compression performance analysis of multi-scale modified concrete based on response surface method. Case Stud Constr Mater. 2022;17(December):e01312. doi:10.1016/j.cscm.2022.e01312
  • Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog Mater Sci. 2021;117(April):100724. doi:10.1016/j.pmatsci.2020.100724
  • Guo Q, Zhao C, Qu M, et al. In-Situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process. Addit Manuf. 2019;28(August):600–609. doi:10.1016/j.addma.2019.04.021
  • Mao W-w, Ning A-g, Guo H-j. Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel. Int J Miner Metall Mater. 2016;23(9):1056–1064. doi:10.1007/s12613-016-1323-z
  • Yan J, Song H, Dong Y, et al. High strength (∼2000MPa) or highly ductile (∼11%) additively manufactured H13 by tempering at different conditions. Mater Sci Eng A. 2020;773(January):138845. doi:10.1016/j.msea.2019.138845
  • Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Mater. 2011;59(14):5845–5858. doi:10.1016/j.actamat.2011.05.061
  • LI Q. Modeling the microstructure–mechanical property relationship for a 12Cr–2W–V–Mo–Ni power plant steel. Mater Sci Eng A. 2003;361(1–2):385–391. doi:10.1016/S0921-5093(03)00565-3
  • Mazaheri Y, Kermanpur A, Najafizadeh A. Strengthening mechanisms of ultrafine grained dual phase steels developed by new thermomechanical processing. ISIJ Int. 2015;55(1):218–226. doi:10.2355/isijinternational.55.218