1,404
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Co-continuous structure enhanced magnetic responsive shape memory PLLA/TPU blend fabricated by 4D printing

, , , , &
Article: e2290186 | Received 28 Sep 2023, Accepted 27 Nov 2023, Published online: 28 Dec 2023

References

  • Chen A, Su J, Li Y, et al. 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering. Int J Extreme Manuf. 2023;5:032007. doi:10.1088/2631-7990/acd88f
  • Oladapo BI, Zahedi SA, Ismail SO, et al. 3D printing of PEEK–cHAp scaffold for medical bone implant. Bio-des Manuf. 2021;4:44–59. doi:10.1007/s42242-020-00098-0
  • Deng Y, Zhang F, Jiang M, et al. Programmable 4D printing of photoactive shape memory composite structures. Acs Appl Mater Inter. 2022;14:42568–42577. doi:10.1021/acsami.2c13982
  • Gardan J. Smart materials in additive manufacturing: state of the art and trends. Virtual Phys Prototy. 2019;14:1–18. doi:10.1080/17452759.2018.1518016
  • Chen A, Wang W, Mao Z. Multi-material 3D and 4D bioprinting of heterogeneous constructs for tissue engineering. Adv Mater. 2023;35:2307686.
  • Nazir F, Iqbal M, Khan AN, et al. Fabrication of robust poly l-lactic acid/cyclic olefinic copolymer (PLLA/COC) blends: study of physical properties, structure, and cytocompatibility for bone tissue engineering. J Mater Res Technol. 2021;13:1732–1751. doi:10.1016/j.jmrt.2021.05.073
  • Arabiyat AS, Pfau MR, Melissa GA, et al. Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds. J Biomed Mater Res A. 2021;109:2334–2345. doi:10.1002/jbm.a.37216
  • Ji X, Gao F, Geng Z. Tunable shape memory of thermoplastic polyurethane/poly (lactic acid) blends via morphology control: performance and mechanism. Mater Express. 2021;11:220–227.
  • Yang W, Weng Y, Puglia D, et al. Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int J Biol Macromol. 2020;144:102–110. doi:10.1016/j.ijbiomac.2019.12.085
  • Huang J, Cao L, Yuan D, et al. Design of multi-stimuli-responsive shape memory biobased PLA/ENR/Fe3O4 TPVs with balanced stiffness–toughness based on selective distribution of Fe3O4. Acs Sustain Chem Eng. 2019;7:2304–2315. doi:10.1021/acssuschemeng.8b05025
  • Kabir S, Kim H, Lee S. Physical property of 3D-printed sinusoidal pattern using shape memory TPU filament. Text Res J. 2020;90:2399–2410. doi:10.1177/0040517520919750
  • Nugroho WT, Dong Y, Pramanik A, et al. Smart polyurethane composites for 3D or 4D printing: general-purpose use, sustainability and shape memory effect. Compos Part B-Eng. 2021;223:109104. doi:10.1016/j.compositesb.2021.109104
  • Guo Y, Yan L, Zeng Z, et al. TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi-walled carbon nanotubes nanofillers. Polym Eng Sci. 2020;60:1118–1128. doi:10.1002/pen.25365
  • Azadi F, Jafari SH, Khonakdar HA, et al. Influence of graphene oxide on thermally induced shape memory behavior of PLA/TPU blends: correlation with morphology, creep behavior, crystallinity, and dynamic mechanical properties. Macromol Mater Eng. 2021;306:2000576. doi:10.1002/mame.202000576
  • Dong K, Panahi-Sarmad M, Cui Z, et al. Electro-induced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber: A theoretical & experimental analysis. Compos Part B-Eng. 2021;220:108994. doi:10.1016/j.compositesb.2021.108994
  • Lin W, Qu J. Enhancing impact toughness of renewable poly(lactic acid)/thermoplastic polyurethane blends via constructing cocontinuous-like phase morphology assisted by ethylene–methyl acrylate–glycidyl methacrylate copolymer. Ind Eng Chem Res. 2019;58:10894–10907. doi:10.1021/acs.iecr.9b01644
  • Wang M, Liang X, Wu H, et al. Super toughed poly (lactic acid)/poly (ethylene vinyl acetate) blends compatibilized by ethylene-methyl acrylate-glycidyl methacrylate copolymer. Polym Degrad Stabil. 2021;193:109705. doi:10.1016/j.polymdegradstab.2021.109705
  • Zhang H, Heng Z, Zhou J, et al. In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chem Eng J. 2020;398:125559. doi:10.1016/j.cej.2020.125559
  • Luo Y, Xiong S, Zhang F, et al. Preparation of conductive polylactic acid/high density polyethylene/carbon black composites with low percolation threshold by locating the carbon black at the interface of co-continuous blends. J Appl Polym Sci. 2021;138:50291. doi:10.1002/app.50291
  • Zheng L, Zhong Y, He T, et al. A codispersed nanosystem of silver-anchored MoS2 enhances antibacterial and antitumor properties of selective laser sintered scaffolds. Int J Bioprinting. 2022;8:577. doi:10.18063/ijb.v8i3.577
  • Liang H, Wang Y, Chen S, et al. Nano-hydroxyapatite bone scaffolds with different porous structures processed by digital light processing 3D printing. Int J Bioprinting. 2021;8:502. doi:10.18063/ijb.v8i1.502
  • Dong Z, Gong J, Zhang H, et al. Preparation and characterization of 3D printed porous 45S5 bioglass bioceramic for bone tissue engineering application. Int J Bioprinting. 2022;8:613. doi:10.18063/ijb.v8i4.613
  • Dee P, Tan S, Le Ferrand H. Fabrication of microstructured calcium phosphate ceramics scaffolds by material extrusion-based 3D printing approach. Int J Bioprinting. 2022;8:551. doi:10.18063/ijb.v8i2.551
  • Pan P, Zhang T, Yu B, et al. A facile construction of bifunctional core-shell magnetic fluorescent Fe3O4@ YVO4: Eu3+ microspheres for latent fingerprint detection. J Colloid Interf Sci. 2022;605:425–431. doi:10.1016/j.jcis.2021.07.074
  • Qi F, Liao R, Wu P, et al. An electrical microenvironment constructed based on electromagnetic induction stimulates neural differentiation. Mater Chem Front. 2023;7:1671–1683. doi:10.1039/D2QM01193J
  • Zhang H, Zhang Y, Hou Z, et al. Magnetic skyrmions: materials, manipulation, detection, and applications in spintronic devices. Mater Futures. 2023;2:032201. doi:10.1088/2752-5724/ace1df
  • Wang Q, Ma Z, Wang Y, et al. Fabrication and characterization of 3D printed biocomposite scaffolds based on PCL and zirconia nanoparticles. Bio-des Manuf. 2021;4:60–71. doi:10.1007/s42242-020-00095-3
  • Gao C, Yao X, Deng Y. Laser-beam powder bed fusion followed by annealing with stress: a promising route for magneto strictive improvement of polycrystalline Fe81Ga19 alloys. Addit Manuf. 2023;68:103516.
  • Qi F, Wang Z, Yang L, et al. A collaborative CeO2@ metal-organic framework nano system to endow scaffolds with photodynamic antibacterial effect. Mater Today Chem. 2023;27:101336. doi:10.1016/j.mtchem.2022.101336
  • Ling C, Li Q, Zhang Z, et al. Influence of heat treatment on microstructure, mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion. Int J Extreme Manuf. 2024;6:015001. doi:10.1088/2631-7990/acfad5
  • Shuai C, Shi X, Yang F, et al. Oxygen vacancy boosting fenton reaction in bone scaffold towards fighting bacterial infection. Int J Extreme Manuf. 2024;6:015101. doi:10.1088/2631-7990/ad01fd
  • Niu P, Li R, Fan Z. Inhibiting cracking and improving strength for additive manufactured AlxCoCrFeNi high entropy alloy via changing crystal structure from BCC-to-FCC. Addit Manuf. 2023;71:103584.
  • Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, et al. Optimization and development of Maghemite (γ-Fe2O3) filled poly-L-lactic acid (PLLA)/thermoplastic polyurethane (TPU) electrospun nanofibers using Taguchi orthogonal array for tissue engineering heart valve. Mat Sci Eng C-Mater. 2017;76:616–627. doi:10.1016/j.msec.2017.03.120
  • Zhang Z, Wang W, Korpacz AN, et al. Binary liquid mixture contact-angle measurements for precise estimation of surface free energy. Langmuir. 2019;35:12317–12325. doi:10.1021/acs.langmuir.9b01252
  • Xiu H, Bai H, Huang C, et al. Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly (L-lactide)/poly (ether) urethane blends. Express Polym Lett. 2013;7:261–271. doi:10.3144/expresspolymlett.2013.24
  • Fan D, Wang Q, Zhu T, et al. Recent advances of magnetic nanomaterials in bone tissue repair. Front Chem. 2020;8:745. doi:10.3389/fchem.2020.00745
  • Chen Y, Zhao X, Li Y, et al. Light-and magnetic-responsive synergy controlled reconfiguration of polymer nanocomposites with shape memory assisted self-healing performance for soft robotics. J Mater Chem C. 2021;9:5515–5527. doi:10.1039/D1TC00468A
  • Huang Y, Ellingford C, Bowen C, et al. Tailoring the electrical and thermal conductivity of multicomponent and multi-phase polymer composites. Int Mater Rev. 2020;65:129–163. doi:10.1080/09506608.2019.1582180
  • Yang J, Yang W, Wang X, et al. Synergistically toughening polyoxymethylene by methyl methacrylate–butadiene–styrene copolymer and thermoplastic polyurethane. Macromol Chem Phys. 2019;220:1800567. doi:10.1002/macp.201800567
  • Salehiyan R, Ray SS. Tuning the conductivity of nanocomposites through nanoparticle migration and interface crossing in immiscible polymer blends: a review on fundamental understanding. Macromol Mater Eng. 2019;304:1800431. doi:10.1002/mame.201800431
  • Zhu X, Kong M, Lv Y, et al. Selective distribution of nanoparticles in immiscible blends: effects on the morphology evolution and rheology in quiescent annealing, shear and extensional flow. J Rheol. 2020;64:1357–1371. doi:10.1122/8.0000069
  • Yoshida S, Trifkovic M. Unraveling the effect of 3d particle localization on coarsening dynamics and rheological properties in cocontinuous polymer blend nanocomposites. Macromolecules. 2019;52:7678–7687. doi:10.1021/acs.macromol.9b01437
  • Sharika T, Abraham J, George SC, et al. Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural properties. Compos Part B-Eng. 2019;173:106798. doi:10.1016/j.compositesb.2019.05.009
  • Xu C, Cui R, Chen Y, et al. Shape memory effect of dynamically vulcanized ethylene-propylene diene rubber/polypropylene blends realized by in-situ compatibilization of sodium methacrylate. Compos Part B-Eng. 2019;179:107532. doi:10.1016/j.compositesb.2019.107532
  • Zhang H, Kang B, Chen L, et al. Enhancing toughness of poly (lactic acid)/thermoplastic polyurethane blends via increasing interface compatibility by polyurethane elastomer prepolymer and its toughening mechanism. Polym Test. 2020;87:106521. doi:10.1016/j.polymertesting.2020.106521
  • Amurin LG, Felisberto MD, Ferreira FLQ, et al. Multifunctionality in ultra high molecular weight polyethylene nanocomposites with reduced graphene oxide: hardness, impact and tribological properties. Polymer. 2022;240:124475. doi:10.1016/j.polymer.2021.124475
  • Arora G, Pathak H. Nanoindentation characterization of polymer nanocomposites for elastic and viscoelastic properties: experimental and mathematical approach. Compos Part C. 2021;4:100103.
  • Tarodiya R, Levy A. Erosion of polymers and polymer composites surfaces by particles. Adv Powder Technol. 2021;32:3149–3159. doi:10.1016/j.apt.2021.07.005
  • Liu L, Wu H, Wang Y, et al. Selective distribution, reinforcement, and toughening roles of MWCNTs in immiscible polypropylene/ethylene-co-vinyl acetate blends. J Polym Sci Pol Phys. 2010;48:1882–1892. doi:10.1002/polb.22063
  • Xiang F, Wu J, Liu L, et al. Largely enhanced ductility of immiscible high density polyethylene/polyamide 6 blends via nano-bridge effect of functionalized multiwalled carbon nanotubes. Polym Advan Technol. 2011;22:2533–2542. doi:10.1002/pat.1796
  • Xiang F, Wang Y, Shi Y, et al. Morphology and mechanical property changes in compatibilized high density polyethylene/polyamide 6 nanocomposites induced by carbon nanotubes. Polym Int. 2012;61:1334–1343. doi:10.1002/pi.4213
  • Liu Y, Cao L, Yuan D, et al. Design of super-tough co-continuous PLA/NR/SiO2 TPVs with balanced stiffness-toughness based on reinforced rubber and interfacial compatibilization. Compos Sci Technol. 2018;165:231–239. doi:10.1016/j.compscitech.2018.07.005
  • Yang J, Qi X, Zhang N, et al. Carbon nanotubes toughened immiscible polymer blends. Compos Commun. 2018;7:51–64. doi:10.1016/j.coco.2017.12.010
  • Hajibabazadeh S, Aghjeh MKR, Palahang M. Study on the fracture toughness and deformation micro-mechanisms of PP/EPDM/SiO2 ternary blend-nanocomposites. J Compos Mater. 2020;54:591–605. doi:10.1177/0021998319863475
  • Zhang T, Zhou M, Guo Z, et al. Improving impact toughness of polylactide/ethylene-co-vinyl-acetate blends via adding fumed silica nanoparticles: effects of specific surface area-dependent interfacial selective distribution of silica. Chin J Polym Sci. 2021;39:1040–1049. doi:10.1007/s10118-021-2565-4
  • Liu Y, Zhang W, Zhang F, et al. Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid filament. Compos Sci Technol. 2019;181:107692. doi:10.1016/j.compscitech.2019.107692
  • Wang W, Liao X, Guo F, et al. Facile fabrication of lightweight shape memory thermoplastic polyurethane/polylactide foams by supercritical carbon dioxide foaming. Ind Eng Chem Res. 2020;59:7611–7623. doi:10.1021/acs.iecr.0c00404
  • Li Z, Li K, He H, et al. Tough and tunable shape memory PLA/PAE melt-blends actuated by temperature. Iran Polym J. 2019;28:371–378. doi:10.1007/s13726-019-00706-6
  • Kuang T, Ju J, Liu T, et al. A facile structural manipulation strategy to prepare ultra-strong, super-tough, and thermally stable polylactide/nucleating agent composites. Adv Compos Hybrid Ma. 2022;5:948–959. doi:10.1007/s42114-021-00390-2
  • Cristea M, Ionita D, Iftime MM. Dynamic mechanical analysis investigations of PLA-based renewable materials: how are they useful? Materials (Basel). 2020;13:5302. doi:10.3390/ma13225302
  • Mehrpouya M, Vahabi H, Janbaz S, et al. 4D printing of shape memory polylactic acid (PLA). Polymer. 2021;230:124080. doi:10.1016/j.polymer.2021.124080
  • Cao L, Liu C, Zou D, et al. Using cellulose nanocrystals as sustainable additive to enhance mechanical and shape memory properties of PLA/ENR thermoplastic vulcanizates. Carbohydr Polym. 2020;230:115618. doi:10.1016/j.carbpol.2019.115618
  • Jamshaid F, Dilshad MR, Islam A, et al. Synthesis, characterization and desalination study of polyvinyl chloride-co-vinyl acetate/cellulose acetate membranes integrated with surface modified zeolites. Microporous Mesoporous Mat. 2020;309:110579. doi:10.1016/j.micromeso.2020.110579
  • Chai J, Wang G, Zhao J, et al. Microcellular PLA/PMMA foam fabricated by CO2 foaming with outstanding shape-memory performance. J CO2 Util. 2021;49:101553. doi:10.1016/j.jcou.2021.101553
  • Zhou C, Zhu P, Liu X, et al. The toughening mechanism of core-shell particles by the interface interaction and crystalline transition in polyamide 1012. Compos Part B-Eng. 2021;206:108539. doi:10.1016/j.compositesb.2020.108539
  • Zhao Y, Peng X, Xu X, et al. Chitosan based photothermal scaffold fighting against bone tumor-related complications: recurrence, infection, and defects. Carbohydr Polym. 2023;300:120264. doi:10.1016/j.carbpol.2022.120264
  • Song JJ, Chang HH, Naguib HE. Biocompatible shape memory polymer actuators with high force capabilities. Eur Polym J. 2015;67:186–198. doi:10.1016/j.eurpolymj.2015.03.067
  • Lai S, Lan Y. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J Polym Res. 2013;20:1–8.
  • Qi X, Yang J, Zhang N, et al. Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Prog Polym Sci. 2021;123:101471. doi:10.1016/j.progpolymsci.2021.101471
  • Ghosh SK, Das TK, Ganguly S, et al. Carbon nanotubes and carbon nanofibers based co-continuous thermoplastic elastomeric blend composites for efficient microwave shielding and thermal management. Compos Part A-Appl S. 2022;161:107118. doi:10.1016/j.compositesa.2022.107118
  • Peng B, Yang Y, Ju T, et al. Fused filament fabrication 4D printing of a highly extensible, self-healing, shape memory elastomer based on thermoplastic polymer blends. ACS Appl Mater Interfaces. 2021;13:12777–12788. doi:10.1021/acsami.0c18618
  • Du L, Xu Z, Fan C, et al. A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shape-memory effects anchored by Fe3O4 nanoparticles. Macromolecules. 2018;51:705–715. doi:10.1021/acs.macromol.7b02641
  • Li L, Zhao B, Wang H, et al. Nanocomposites of polyhydroxyurethane with Fe3O4 nanoparticles: synthesis, shape memory and reprocessing properties. Compos Sci Technol. 2021;215:109009. doi:10.1016/j.compscitech.2021.109009
  • Xu S, Zhao B, Adeel M, et al. Shape memory and self-healing properties of polymer-grafted Fe3O4 nanocomposites implemented with supramolecular quadruple hydrogen bonds. Polymer. 2019;172:404–414. doi:10.1016/j.polymer.2019.04.020
  • Xu C, Lin M, Wang X, et al. Fabrication of high-performance magnetic elastomers by using natural polymer as auxiliary dispersant of Fe3O4 nanoparticles. Compos Part A-Appl S. 2021;140:106158. doi:10.1016/j.compositesa.2020.106158
  • Arash S, Akbari B, Ghaleb S, et al. Preparation of PLA-TPU-nanoclay composites and characterization of their morphological, mechanical, and shape memory properties. J Mech Behav Biomed Mater. 2023;139:105642. doi:10.1016/j.jmbbm.2022.105642
  • Lai W, Feng S, Chan Y, et al. In vivo investigation into effectiveness of Fe3O4/PLLA nanofibers for bone tissue engineering applications. Polymers (Basel). 2018;10:804. doi:10.3390/polym10070804
  • Shi Z, Huang G, Li Z, et al. A PLA-tPU based magnesium ion incorporated CSH/nHA bioactive porous composite scaffold for critical bone defect repair. Mater Adv. 2023;4:3583–3592. doi:10.1039/D3MA00109A
  • Lin S, Li J, Dong L, et al. Periodic-mechanical-stimulus enhanced osteogenic differentiation of mesenchymal stem cells on Fe3O4/mineralized collagen coatings. ACS Biomater Sci Eng. 2019;5:6446–6453. doi:10.1021/acsbiomaterials.9b00833
  • Russo T, Peluso V, Gloria A, et al. Combination design of time-dependent magnetic field and magnetic nanocomposites to guide cell behavior. Nanomaterials. 2020;10:577. doi:10.3390/nano10030577
  • Huang D, Wang J, Wen B, et al. Emerging diagnostic and therapeutic technologies based on ultrasound-triggered biomaterials. Mater Futures. 2023;2:032001. doi:10.1088/2752-5724/acdf05
  • Wu D, Kang L, Tian J, et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomed. 2020;15:7979–7993. doi:10.2147/IJN.S275650
  • Huang Z, He Y, Chang X, et al. A magnetic iron oxide/polydopamine coating can improve osteogenesis of 3D-printed porous titanium scaffolds with a static magnetic field by upregulating the TGFβ-smads pathway. Adv Healthc Mater. 2020;9:2000318. doi:10.1002/adhm.202000318
  • Lee S, Yan D, Zhou X, et al. Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration. Mat Sci Eng C-Mater. 2020;111:110844. doi:10.1016/j.msec.2020.110844
  • Shaltooki M, Dini G, Mehdikhani M. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mat Sci Eng C-Mater. 2019;105:110138. doi:10.1016/j.msec.2019.110138