1,003
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel model for directed energy deposition-arc based on in-order stacking of primitives

, , ORCID Icon, , &
Article: e2291471 | Received 22 Aug 2023, Accepted 28 Nov 2023, Published online: 14 Dec 2023

References

  • Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Comput Mater Sci. 2011;50(12):3315–3322. doi:10.1016/j.commatsci.2011.06.023
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi:10.1016/j.actamat.2016.07.019
  • Queguineur A, Rückert G, Cortial F, et al. Evaluation of wire arc additive manufacturing for large-sized components in naval applications. Weld World. 2018;62:259–266. doi:10.1007/s40194-017-0536-8
  • Chen S, Zhang Y, Feng Z. Arc welding processes for additive manufacturing: a review. In: Transactions on intelligent welding manufacturing. Singapore: Springer Singapore Pte. Limited; 2017. p. 3–24.
  • Joshi S, Sheikh A. 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototyp. 2015;10:175–185. doi:10.1080/17452759.2015.1111519
  • Derekar KS. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol. 2018;34(8):895–916. doi:10.1080/02670836.2018.1455012
  • Sinha K, Pramanik A, Yagati S, et al. Research progress in arc based additive manufacturing of aluminium alloys – A review. Measurement ( Mahwah N J). 2022;200:111672. doi:10.1016/j.measurement.2022.111672.
  • Huang L, Chen X, Konovalov S, et al. A review of challenges for wire and Arc additive manufacturing (WAAM). Trans Indian Inst Metals. 2023. doi:10.1007/s12666-022-02823-y
  • Rodrigues TA, Duarte V, Miranda RM, et al. Current status and perspectives on wire and Arc additive manufacturing (WAAM). Materials (Basel). 2019;12:1121. doi:10.3390/ma12071121
  • Zhao H, Zhang G, Yin Z, et al. A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol. 2011;211(3):488–495. doi:10.1016/j.jmatprotec.2010.11.002
  • Zhao Y, Jia Y, Chen S, et al. Process planning strategy for wire-arc additive manufacturing: Thermal behavior considerations. Addit Manuf. 2020;32:100935. doi:10.1016/j.addma.2019.100935
  • Chen X, Kong F, Fu Y, et al. A review on wire-arc additive manufacturing: typical defects, detection approaches, and multisensor data fusion-based model. Int J Adv Manuf Technol. 2021;117(3-4):707–727. doi:10.1007/s00170-021-07807-8
  • Singh S, Sharma SK, Rathod DW. A review on process planning strategies and challenges of WAAM. Mater Today: Proc. 2021;47:6564–6575. doi:10.1016/j.matpr.2021.02.632
  • Tomar B, Shiva S, Nath T. A review on wire arc additive manufacturing: processing parameters, defects, quality improvement and recent advances. Mater Today Commun. 2022;31:103739. doi:10.1016/j.mtcomm.2022.103739
  • Xiong J, Yin Z, Zhang W. Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. J Mater Process Technol. 2016;233:100–106. doi:10.1016/j.jmatprotec.2016.02.021
  • Xiong J, Yu Y, Zheng S, et al. Arc voltage measurements for height control in pulsed arc additive manufacturing. Measurement ( Mahwah N J). 2022;191:110867. doi:10.1016/j.measurement.2022.110867
  • Li Y, Huang X, Horváth I, et al. GMAW-based additive manufacturing of inclined multi-layer multi-bead parts with flat-position deposition. J Mater Process Technol. 2018a;262:359–371. doi:10.1016/j.jmatprotec.2018.07.010
  • Li Y, Sun Y, Han Q, et al. Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts. J Mater Process Technol. 2018b;252:838–848. doi:10.1016/j.jmatprotec.2017.10.017
  • Da Silva LJ, Souza DM, de Araújo DB, et al. Concept and validation of an active cooling technique to mitigate heat accumulation in WAAM. Int J Adv Manuf Technol. 2020;107(5-6):2513–2523. doi:10.1007/s00170-020-05201-4
  • Heinrich L, Feldhausen T, Saleeby K, et al. Build plate conduction cooling for thermal management of wire arc additive manufactured components. Int J Adv Manuf Technol. 2023;124(5):1557–1567. doi:10.1007/s00170-022-10558-9
  • Alhakeem MM, Mollamahmutoglu M, Yilmaz O, et al. A deposition strategy for wire Arc additive manufacturing based on temperature variance analysis to minimize overflow and distortion. J Manuf Process. 2023;85:1208–1220. doi:10.1016/j.jmapro.2022.11.006
  • Amal MS, Justus Panicker CT, Senthilkumar V. Simulation of wire arc additive manufacturing to find out the optimal path planning strategy. Mater Today: Proc. 2022;66:2405–2410. doi:10.1016/j.matpr.2022.06.338
  • Zhou Z., Shen H., Liu B., et al. Thermal field prediction for welding paths in multi-layer gas metal arc welding-based additive manufacturing: a machine learning approach. J Manuf Process. 2021;64:960–971. doi:10.1016/j.jmapro.2021.02.033
  • Zhou Z, Shen H, Lin J, et al. Continuous tool-path planning for optimizing thermo-mechanical properties in wire-arc additive manufacturing: an evolutional method. J Manuf Process. 2022;83:354–373. doi:10.1016/j.jmapro.2022.09.009
  • Gao Z, Li Y, Shi H, et al. Microstructure characteristics under varying solidification parameters in different zones during CMT arc additive manufacturing process of 2319 aluminum alloy. Vacuum. 2023;214:112177. doi:10.1016/j.vacuum.2023.112177.
  • Wei Y, Liu F, Liu F, et al. Effect of arc oscillation on porosity and mechanical properties of 2319 aluminum alloy fabricated by CMT-wire arc additive manufacturing. J Mater Res Technol. 2023;24:3477–3490. doi:10.1016/j.jmrt.2023.03.203.
  • Sun L, Ren X, He J, et al. A bead sequence-driven deposition pattern evaluation criterion for lowering residual stresses in additive manufacturing. Addit Manuf. 2021;48:102424. doi:10.1016/j.addma.2021.102424.
  • Liu M, Yi H, Cao H, et al. Heat accumulation effect in metal droplet-based 3D printing: evolution mechanism and elimination Strategy. Addit Manuf. 2021;48:102413. doi:10.1016/j.addma.2021.102413
  • Oliveira JP, Santos TG, Miranda RM. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog Mater Sci. 2020;107:100590. doi:10.1016/j.pmatsci.2019.100590
  • Limousin M, Manokruang S, Vignat F, et al. Effect of temperature and substrate geometry on single aluminium weld bead geometry deposited by wire arc additive manufacturing: proposition of an experimental procedure. CIRP J Manuf Sci Technol. 2023;45:61–68. doi:10.1016/j.cirpj.2023.06.010.
  • Banaee SA, Kapil A, Marefat F, et al. Generalised overlapping model for multi-material wire arc additive manufacturing (WAAM). Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2210541
  • Fang X, Bai H, Yao Y, et al. Research on multi-bead overlapping process of wire and Arc additive manufacturing based on cold metal transfer. Jixie Gongcheng Xuebao/J Mech Eng. 2020;56(1):141–147. doi:10.3901/JME.2020.01.141
  • Ding D, Pan Z, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot Comput Integr Manuf. 2015;31:101–110. doi:10.1016/j.rcim.2014.08.008
  • Suryakumar S, Karunakaran KP, Bernard A, et al. Weld bead modeling and process optimization in Hybrid Layered Manufacturing. Comput Aided Des. 2011;43(4):331–344. doi:10.1016/j.cad.2011.01.006.
  • Yang D, Wang X, Wang Y, et al. Surface quality evaluation of multi-bead overlapping for high nitrogen steel by CMT based additive manufacturing. Hanjie Xuebao/Trans China Weld Inst. 2020;41(4):73–76. doi:10.12073/j.hjxb.20190914002
  • Zhang C, Chen TH, IEEE, IEEE. Efficient feature extraction for 2D/3D objects in mesh representation. 2001 International Conference on Image Processing, Vol III, Proceedings. 2001. 935–938. doi:10.1109/ICIP.2001.958278
  • Fu J, Qiu K, Gong L, et al. Effect of tool-path on morphology and mechanical properties of Ti-6Al-4V fabricated by wire and Arc additive manufacturing. MATEC Web Conf. 2017;128:05009. doi:10.1051/matecconf/201712805009
  • Nguyen L, Buhl J, Bambach M. Multi-bead overlapping models for tool path generation in wire-arc additive manufacturing processes. Procedia Manuf. 2020;47:1123–1128. doi:10.1016/j.promfg.2020.04.129
  • Rauch M, Nwankpa UV, Hascoet J. Investigation of deposition strategy on wire and arc additive manufacturing of aluminium components. J Adv Join Process. 2021;4:100074. doi:10.1016/j.jajp.2021.100074
  • Pathak D, Pratap Singh R, Gaur S, et al. To study the influence of process parameters on weld bead geometry in shielded metal arc welding. Mater Today: Proc. 2021;44:39–44. doi:10.1016/j.matpr.2020.06.164
  • Li W, Zhang H, Wang G, et al. Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing. Robot Comput Integr Manuf. 2023;80:102470. doi:10.1016/j.rcim.2022.102470
  • Lin Q, Zeng C, Cao R, et al. The spreading simulation of molten Al alloy on Q235 steel in the first cycle of cold metal transfer process. Int J Heat Mass Transf. 2016;96:118–124. doi:10.1016/j.ijheatmasstransfer.2016.01.002
  • Montevecchi F, Venturini G, Grossi N, et al. Idle time selection for wire-arc additive manufacturing: a finite element-based technique. Addit Manuf. 2018;21:479–486. doi:10.1016/j.addma.2018.01.007
  • Du J, Wei Z. Numerical analysis of pileup process in metal microdroplet deposition manufacture. Int J Therm Sci. 2015;96:35–44. doi:10.1016/j.ijthermalsci.2015.04.016
  • Fang M, Chandra S, Park CB. Experiments on remelting and solidification of molten metal droplets deposited in vertical columns. J Manuf Sci Eng. 2007;129(2):311–318. doi:10.1115/1.2540630
  • Zhang Y, Jing H, Xu L, et al. Effects of different scanning patterns on nickel alloy-directed energy deposition based on thermal analysis. Virtual Phys Prototyp. 2021;16(sup1):S98–S115. doi:10.1080/17452759.2021.1896173
  • Wu B, Pan Z, Ding D, et al. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy. J Mater Process Technol. 2018;258:97–105. doi:10.1016/j.jmatprotec.2018.03.024
  • Cao H, Huang R, Yi H, et al. Asymmetric molten pool morphology in wire-arc directed energy deposition: evolution mechanism and suppression strategy. Addit Manuf. 2022;59:103113. doi:10.1016/j.addma.2022.103113
  • Nalajam PK, Varadarajan R. Experimental and theoretical investigations on cold metal transfer welds using neural networks: a computational model of weld geometry. Exp Tech. 2021;45(6):705–720. doi:10.1007/s40799-021-00451-7
  • Venkata Rao K, Parimi S, Suvarna Raju L, et al. Modelling and optimization of weld bead geometry in robotic gas metal arc-based additive manufacturing using machine learning, finite-element modelling and graph theory and matrix approach. Soft Comput. 2022;26(7):3385–3399. doi:10.1007/s00500-022-06749-x
  • Wang Z, Zimmer-Chevret S, Léonard F, et al. Prediction of bead geometry with consideration of interlayer temperature effect for CMT-based wire-arc additive manufacturing. Weld World. 2021;65(12):2255–2266. doi:10.1007/s40194-021-01192-2
  • Pratap Singh V, Dahiya K, Khanna P. Mathematical analysis of effect of process parameters on weld bead geometry of MIG welded low carbon steel plates. Mater Today: Proc. 2022;56:655–660. doi:10.1016/j.matpr.2022.01.022
  • Hu Z, Qin X, Li Y, et al. Welding parameters prediction for arbitrary layer height in robotic wire and arc additive manufacturing. J Mech Sci Technol. 2020;34(4):1683–1695. doi:10.1007/s12206-020-0331-0