1,944
Views
0
CrossRef citations to date
0
Altmetric
Research Article

17-4 PH and SS316L bimetallic structures via additive manufacturing

&
Article: e2292695 | Received 14 Oct 2023, Accepted 02 Dec 2023, Published online: 18 Dec 2023

References

  • Wegst UGK, Bai H, Saiz E, et al. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36. doi:10.1038/nmat4089.
  • Bandyopadhyay A, Traxel KD, Bose S. Nature-inspired materials and structures using 3D Printing. Materials Science and Engineering: R: Reports. 2021;145; Elsevier Ltd, doi:10.1016/j.mser.2021.100609.
  • Martin JJ, Fiore BE, Erb RM. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun. 2015;6; doi:10.1038/ncomms9641.
  • Kokkinis D, Schaffner M, Studart AR. Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun. 2015;6; doi:10.1038/ncomms9643.
  • Finnemore A, Cunha P, Shean T, et al. Biomimetic layer-by-layer assembly of artificial nacre. Nat Commun. 2012;3; doi:10.1038/ncomms1970.
  • Barthelat F, Yin Z, Buehler MJ. Structure and mechanics of interfaces in biological materials. Nat Rev Mater. 2016;1; Nature Publishing Group, doi:10.1038/natrevmats.2016.7.
  • Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Mater Sci Eng: R: Rep. 2018;129:1–16. doi:10.1016/j.mser.2018.04.001.
  • Seok M-Y, Lee J-A, Lee D-H, et al. Decoupling the contributions of constituent layers to the strength and ductility of a multi-layered steel. Acta Mater. 2016;121:164–172. doi:10.1016/j.actamat.2016.09.007.
  • Wu H, Fan G, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect. Int J Plast. 2017;89:96–109. doi:10.1016/j.ijplas.2016.11.005.
  • Zhang L, Chen Z, Wang Y, et al. Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure. Scr Mater. 2017;141:111–114. doi:10.1016/j.scriptamat.2017.06.044.
  • Wang YF, Wang MS, Fang XT, et al. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces. Int J Plast. 2019;123:196–207. doi:10.1016/j.ijplas.2019.07.019.
  • Onuike B, Bandyopadhyay A. Additive manufacturing of Inconel 718 – Ti6Al4V bimetallic structures. Addit Manuf. 2018;22:844–851. doi:10.1016/j.addma.2018.06.025.
  • Tofail SAM, Koumoulos EP, Bandyopadhyay A, et al. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21(1):22–37. Elsevier B.V., doi:10.1016/j.mattod.2017.07.001.
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001.
  • Squires L, Roberts E, Bandyopadhyay A. Radial bimetallic structures via wire arc directed energy deposition-based additive manufacturing. Nat Commun. 2023;14(1), doi:10.1038/s41467-023-39230-w.
  • MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science. 2016;353(6307). American Association for the Advancement of Science, doi:10.1126/science.aaf2093.
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. Elsevier B.V., doi:10.1016/j.mattod.2021.03.020.
  • Shamsaei N, Yadollahi A, Bian L, et al. An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Additive Manufacturing. 2015;8:12–35. Elsevier B.V., doi:10.1016/j.addma.2015.07.002.
  • Guo X, Wei W, Xu Y, et al. Wall thickness distribution of Cu–Al bimetallic tube based on free bending process. Int J Mech Sci. 2019;150:12–19. doi:10.1016/j.ijmecsci.2018.10.013.
  • España FA, Balla VK, Bose S, et al. Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping. Mater Sci Eng: C. 2010;30(1):50–57. doi:10.1016/j.msec.2009.08.006.
  • Carroll BE, Otis RA, Borgonia JP, et al. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling. Acta Mater. 2016;108:46–54. doi:10.1016/j.actamat.2016.02.019.
  • Bandyopadhyay A, Traxel KD, Lang M, et al. Alloy design via additive manufacturing: advantages, challenges, applications and perspectives. Mater Today. 2022;52:207–224. Elsevier B.V., doi:10.1016/j.mattod.2021.11.026.
  • Bandyopadhyay A, Zhang Y, Onuike B. Additive manufacturing of bimetallic structures. Virtual Phys Prototyp. 2022;17(2):256–294. Taylor and Francis Ltd., doi:10.1080/17452759.2022.2040738.
  • Xiao Y, Wan Z, Liu P, et al. Quantitative simulations of grain nucleation and growth at additively manufactured bimetallic interfaces of SS316L and IN625. J Mater Process Technol. 2022;302; doi:10.1016/j.jmatprotec.2022.117506.
  • Li W, Kishore MN, Zhang R, et al. Comprehensive studies of SS316L/IN718 functionally gradient material fabricated with directed energy deposition: multi-physics & multi-materials modelling and experimental validation. Addit Manuf. 2023;61; doi:10.1016/j.addma.2022.103358.
  • Groden C, Traxel KD, Afrouzian A, et al. Inconel 718-W7Ni3Fe bimetallic structures using directed energy deposition-based additive manufacturing. Virtual Phys Prototyp. 2022;17(2):170–180. doi:10.1080/17452759.2022.2025673.
  • Sahasrabudhe H, Harrison R, Carpenter C, et al. Stainless steel to titanium bimetallic structure using LENS™. Addit Manuf. 2015;5:1–8. doi:10.1016/j.addma.2014.10.002.
  • Ezuber H, Alshater A, Abulhasan M. Role of thiosulfate in susceptibility of AISI 316L austenitic stainless steels to pitting corrosion in 3.5% sodium chloride solutions. Surf Eng Appl Electrochem. 2017;53(5):493–500. doi:10.3103/S1068375517050052.
  • Jackson MA, Kim A, Manders JA, et al. Production of mechanically-generated 316L stainless steel feedstock and its performance in directed energy deposition processing as compared to gas-atomized powder. CIRP J Manuf Sci Technol. 2020;31:233–243. doi:10.1016/j.cirpj.2020.05.014.
  • Sabooni S, Chabok A, Feng SC, et al. Laser powder bed fusion of 17–4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Addit Manuf. 2021;46:102176, doi:10.1016/j.addma.2021.102176.
  • Benarji K, Kumar YR, Paul CP, et al. Parametric investigation and characterization on SS316 built by laser-assisted directed energy deposition. Proc Inst Mech Eng, Part L: J Mater: Des Appl 2020;234(3):452–466. doi:10.1177/1464420719894718.
  • Das T, Mukherjee M, Chatterjee D, et al. A comparative evaluation of the microstructural characteristics of L-DED and W-DED processed 316L stainless steel. CIRP J Manuf Sci Technol. 2023;40:114–128. doi:10.1016/j.cirpj.2022.11.010.
  • Pacheco JT, Meura VH, Bloemer PRA, et al. Laser directed energy deposition of AISI 316L stainless steel: the effect of build direction on mechanical properties in as-built and heat-treated conditions. Adv Ind Manuf Eng. 2022;4; doi:10.1016/j.aime.2022.100079.
  • Mathoho I, Akinlabi ET, Arthur N, et al. Impact of DED process parameters on the metallurgical characteristics of 17-4 PH SS deposited using DED. CIRP J Manuf Sci Technol. 2020;31:450–458. doi:10.1016/j.cirpj.2020.07.007.
  • Nezhadfar PD, Gradl PR, Shao S, et al. Microstructure and deformation behavior of additively manufactured 17-4 stainless steel: laser powder Bed fusion vs. laser powder directed energy deposition. JOM. 2022;74(3):1136–1148. doi:10.1007/s11837-021-05032-y.
  • Wang S, Ning J, Zhu L, et al. Role of porosity defects in metal 3D printing: formation mechanisms, impacts on properties and mitigation strategies. Mater Today. 2022;59:133–160. Elsevier B.V., doi:10.1016/j.mattod.2022.08.014.
  • Bartlett JL, Jarama A, Jones J, et al. Prediction of microstructural defects in additive manufacturing from powder bed quality using digital image correlation. Mater Sci Eng A. 2020;794; doi:10.1016/j.msea.2020.140002.
  • Afrouzian A, Groden CJ, Field DP, et al. Additive manufacturing of Ti-Ni bimetallic structures. Mater Des. 2022;215; doi:10.1016/j.matdes.2022.110461.
  • ASTM E407-07. “Designation: E407 − 07 (Reapproved 2015) ‘1 Standard Practice for Microetching Metals and Alloys 1,” ASTM International, 2015, doi:10.1520/E0407-07R15E01.
  • ASTM E9-19. “Standard test methods of compression testing of metallic materials at room temperature 1,” ASTM International, doi:10.1520/E0009-19.
  • Porter DA, Easterling KE, Sherif ME. Phase transformations in metals and alloys. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2009.
  • Cheruvathur S, Lass EA, Campbell CE. Additive manufacturing of 17-4 PH stainless steel: post-processing heat treatment to achieve uniform reproducible microstructure. JOM. 2016;68(3):930–942. doi:10.1007/s11837-015-1754-4.
  • Wang D, Cheng D, Zhou Z, et al. Effect of laser power on the microstructure and properties of additive manufactured 17-4 PH stainless steel in different fabrication atmosphere. Mater Sci Eng A. 2022;839:142846, doi:10.1016/j.msea.2022.142846.
  • Zhang S, Wang Q, Yang R, et al. Composition equivalents of stainless steels understood via gamma stabilizing efficiency. Sci Rep. 2021;11(1):5423, doi:10.1038/s41598-021-84917-z.
  • Jägle EA, Choi P-P, Van Humbeeck J, et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res. 2014;29(17):2072–2079. doi:10.1557/jmr.2014.204.
  • Bontha S, Klingbeil NW, Kobryn PA, et al. Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J Mater Process Technol. 2006;178(1–3):135–142. doi:10.1016/j.jmatprotec.2006.03.155.
  • Nenadl O, Ocelík V, De Hosson JTM. Texture development in direct powder deposition. J Laser Appl. 2017;29(4), doi:10.2351/1.5007944.
  • Lee Y, Nordin M, Babu SS, et al. Effect of fluid convection on dendrite arm spacing in laser deposition. Metall. Mater. Trans. B. 2014;45(4):1520–1529. doi:10.1007/s11663-014-0054-7.
  • Wei HL, Mazumder J, DebRoy T. Evolution of solidification texture during additive manufacturing. Sci Rep. 2015;5; doi:10.1038/srep16446.
  • Sarkar S, Mukherjee S, Kumar CS, et al. Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process. J Manuf Process. 2020;50:279–294. doi:10.1016/j.jmapro.2019.12.048.
  • Li K, Li D, Liu D, et al. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel. Appl Surf Sci. 2015;340:143–150. doi:10.1016/j.apsusc.2015.02.171.
  • Vunnam S, Saboo A, Sudbrack C, et al. Effect of powder chemical composition on the as-built microstructure of 17-4 PH stainless steel processed by selective laser melting. Addit Manuf. 2019;30; doi:10.1016/j.addma.2019.100876.
  • Liu W, Ma J, Atabaki MM, et al. Hybrid laser-arc welding of 17-4 PH martensitic stainless steel. Lasers Manuf Mater Process. 2015;2(2):74–90. doi:10.1007/s40516-015-0007-2.
  • Kotecki J D, Lippold C J. “Welding Metallurgy and weldability of stainless steel”.
  • Suárez A, Panfilo A, Aldalur E, et al. Microstructure and mechanical properties of mild steel-stainless steel bimetallic structures built using Wire Arc Additive Manufacturing. CIRP J Manuf Sci Technol. 2022;38:769–773. doi:10.1016/j.cirpj.2022.06.018.
  • Marefat F, Kapil A, Banaee SA, et al. Evaluating shielding gas-filler wire interaction in bi-metallic wire arc additive manufacturing (WAAM) of creep resistant steel-stainless steel for improved process stability and build quality. J Manuf Process. 2023;88:110–124. doi:10.1016/j.jmapro.2023.01.046.
  • Dash A, Squires L, Avila JD, et al. Influence of active cooling on microstructure and mechanical properties of wire arc additively manufactured mild steel. Front Mech Eng. 2023;9; doi:10.3389/fmech.2023.1130407.
  • Krauss G. (1999). “Martensite in steel: strength and structure,” [Online]. Available: www.elsevier.com/locate/msea.
  • Yu YS, Wang ZQ, Wu BB, et al. New insight into the hardenability of high strength low alloy steel from the perspective of crystallography. Mater Lett. 2021;292; doi:10.1016/j.matlet.2021.129624.
  • Keshavarzkermani A, Sadowski M, Ladani L. Direct metal laser melting of Inconel 718: process impact on grain formation and orientation. J Alloys Compd. 2018;736:297–305. doi:10.1016/j.jallcom.2017.11.130.
  • Bazarnik P, Huang Y, Lewandowska M, et al. Structural impact on the Hall–Petch relationship in an Al–5Mg alloy processed by high-pressure torsion. Mater Sci Eng A. 2015;626:9–15. doi:10.1016/j.msea.2014.12.027.
  • Li CL, Mei QS, Li JY, et al. Hall-Petch relations and strengthening of Al-ZnO composites in view of grain size relative to interparticle spacing. Scr Mater. 2018;153:27–30. doi:10.1016/j.scriptamat.2018.04.042.
  • Wu C, Chen J, Yu Z, et al. Heterogeneous mechanical properties along the building direction in direct laser deposited 17-4 PH steel. Mater Sci Eng A. 2021;825:141936, doi:10.1016/j.msea.2021.141936.
  • Lashgari HR, Kong C, Adabifiroozjaei E, et al. Microstructure, post thermal treatment response, and tribological properties of 3D printed 17-4 PH stainless steel. Wear. 2020: 203367–203457. doi:10.1016/j.wear.2020.203367.
  • Kumaran M, Senthilkumar V. Influence of heat treatment on stainless steel 316L alloy manufactured by hybrid additive manufacturing using powder Bed fusion and directed energy deposition. Met Mater Int. 2023;29(2):467–484. doi:10.1007/s12540-022-01225-5.
  • ASTM SA240. Specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications. ASTM International. 2007.
  • Shamsujjoha M, Agnew SR, Fitz-Gerald JM, et al. High strength and ductility of additively manufactured 316L stainless steel explained. Metall Mater Trans A 2018;49(7):3011–3027. doi:10.1007/s11661-018-4607-2.
  • Lim SJ, Huh H. Ductile fracture behavior of BCC and FCC metals at a wide range of strain rates. Int J Impact Eng. 2022;159; doi:10.1016/j.ijimpeng.2021.104050.
  • Zhong Y, Liu L, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater. 2016;470:170–178. doi:10.1016/j.jnucmat.2015.12.034.
  • Wang L, Dong C, Man C, et al. Enhancing the corrosion resistance of selective laser melted 15-5PH martensite stainless steel via heat treatment. Corros Sci. 2020;166; doi:10.1016/j.corsci.2019.108427.
  • A693 − 22. Specification for Precipitation-Hardening Stainless and Heat-Resisting Steel Plate, Sheet, and Strip. ASTM International, doi:10.1520/A0693-22.
  • Murr LE, Martinez E, Hernandez J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting. J Mater Res Technol. 2012;1(3):167–177. doi:10.1016/S2238-7854(12)70029-7.
  • Ferguson JB, Schultz BF, Venugopalan D, et al. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: considerations of stress and energy. Met Mater Int. 2014;20(2):375–388. doi:10.1007/s12540-014-2017-6.
  • ASME International. ASME HANDBOOK Volume 1, 10th ed. Geauga County, Ohio, US: ASM International. 1990.