1,040
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Laser additive manufacturing of Miura-origami tube inspired quasi-zero stiffness metamaterial with prominent longitudinal wave propagation

, , , , & ORCID Icon
Article: e2299691 | Received 09 Aug 2023, Accepted 21 Dec 2023, Published online: 05 Jan 2024

References

  • Zhai Z, Wu L, Jiang H. Mechanical metamaterials based on origami and kirigami. Appl Phys Rev. 2021;8(4). doi:10.1063/5.0051088
  • Chen Y, Feng J. Folding of a type of deployable origami structures. Intern J Struct Stabil Dynam. 2012;12(06):1250054), doi:10.1142/S021945541250054X
  • Mundilova K. On mathematical folding of curved crease origami: sliding developables and parametrizations of folds into cylinders and cones. Computer-Aided Design. 2019;115:34–41. doi:10.1016/j.cad.2019.05.026
  • Sareh P, Chermprayong P, Emmanuelli M, et al. Rotorigami: A rotary origami protective system for robotic rotorcraft. Science Robotics. 2018;3(22):eaah5228), doi:10.1126/scirobotics.aah5228.
  • Tao K, Yi H, Yang Y, et al. Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability. Microsyst Nanoeng. 2020;6(1):56), doi:10.1038/s41378-020-0163-1
  • Turner N, Goodwine B, Sen M. A review of origami applications in mechanical engineering. Proc Instit Mech Eng Part C J Mech Eng Sci. 2016;230(14):2345–2362. doi:10.1177/0954406215597713
  • Cai J, Ren Z, Ding Y, et al. Deployment simulation of foldable origami membrane structures. Aerospace Sci Technol. 2017;67:343–353. doi:10.1016/j.ast.2017.04.002
  • Sun Z, Yang D, Duan B, et al. Structural design, dynamic analysis, and verification test of a novel double-ring deployable truss for mesh antennas. Mech Mach Theory. 2021;165:104416), doi:10.1016/j.mechmachtheory.2021.104416
  • Bai P, Zhu G, Lin Z-H, et al. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano. 2013;7(4):3713–3719. doi:10.1021/nn4007708
  • Guo H, Yeh M-H, Zi Y, et al. Ultralight Cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano. 2017;11(5):4475–4482. doi:10.1021/acsnano.7b00866
  • Song Z, Wang X, Lv C, et al. Kirigami-based stretchable lithium-ion batteries. Sci Rep. 2015b;5(1):10988), doi:10.1038/srep10988
  • Kuribayashi K, Tsuchiya K, You Z, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater Sci Eng A. 2006;419(1):131–137. doi:10.1016/j.msea.2005.12.016
  • Qiu L, Yu Y, Liu Y. Design and analysis of lamina emergent joint (LEJ) based on origami technology and mortise-tenon structure. Mech Mach Theory. 2021;160:104298), doi:10.1016/j.mechmachtheory.2021.104298
  • Taylor AJ, Slutzky T, Feuerman L, et al. MR-Conditional SMA-based origami joint. IEEE/ASME Trans Mechatr. 2019;24(2):883–888. doi:10.1109/TMECH.2019.2891993
  • Blees MK, Barnard AW, Rose PA, et al. Graphene kirigami. Nature. 2015;524(7564):204–207. doi:10.1038/nature14588
  • Jamalimehr A, Mirzajanzadeh M, Akbarzadeh A, et al. Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states. Nat Commun. 2022;13(1):1816), doi:10.1038/s41467-022-29484-1
  • Lv C, Krishnaraju D, Konjevod G, et al. Origami based mechanical metamaterials. Sci Rep. 2014;4(1):5979), doi:10.1038/srep05979
  • Xiao K, Liang Z, Zou B, et al. Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions. Nat Commun. 2022;13(1):7474), doi:10.1038/s41467-022-35224-2
  • Becker C, Bao B, Karnaushenko DD, et al. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays. Nat Commun. 2022;13(1):2121), doi:10.1038/s41467-022-29802-7
  • Ha M, Bermúdez GSC, Liu JAC, et al. Reconfigurable magnetic origami actuators with on-board sensing for guided assembly. Adv Mater. 2021;33(25):2008751), doi:10.1002/adma.202008751
  • Mu J, Hou C, Wang H, et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci Adv. n.d.;1(10):e1500533), doi:10.1126/sciadv.1500533
  • Jin X, Fang H, Yu X, et al. Reconfigurable origami-inspired window for tunable noise reduction and air ventilation. Build Environ. 2023;227:109802), doi:10.1016/j.buildenv.2022.109802
  • Liu S, Peng G, Jin K. Design and characteristics of a novel QZS vibration isolation system with origami-inspired corrector. Nonlinear Dyn. 2021a;106(1):255–277. doi:10.1007/s11071-021-06821-5
  • Liu X, Wang C, Zhang Y, et al. Investigation of broadband sound absorption of smart micro-perforated panel (MPP) absorber. Intern J Mech Sci. 2021b;199:106426), doi:10.1016/j.ijmecsci.2021.106426
  • Yu X, Fang H, Cui F, et al. Origami-inspired foldable sound barrier designs. J Sound Vib. 2019;442:514–526. doi:10.1016/j.jsv.2018.11.025
  • Yasuda H, Yang J. Reentrant origami-based metamaterials with negative poisson's ratio and bistability. Phys Rev Lett 2015;114(18):185502), doi:10.1103/PhysRevLett.114.185502
  • Townsend S, Adams R, Robinson M, et al. 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior. Mater Des. 2020;195:108930), doi:10.1016/j.matdes.2020.108930
  • Liu K, Tachi T, Paulino GH. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. Nat Commun. 2019;10(1):4238), doi:10.1038/s41467-019-11935-x
  • Liu K, Li P, Wang Z. Buckling-regulated origami materials with synergy of deployable and undeployable features. Intern J Mech Sci. 2023;247:108167), doi:10.1016/j.ijmecsci.2023.108167
  • Li B, Zhang W, Fu W, et al. Laser powder bed fusion (L-PBF) 3D printing thin overhang walls of permalloy for a modified honeycomb magnetic-shield structure. Thin-Walled Struct. 2023a;182:110185), doi:10.1016/j.tws.2022.110185
  • Cai C, Zhou J, Wang K, et al. Quasi-zero-stiffness metamaterial pipe for low-frequency wave attenuation. Eng Struct. 2023;279:115580), doi:10.1016/j.engstruct.2022.115580
  • Guo S, Gao R, Tian X, et al. A quasi-zero-stiffness elastic metamaterial for energy absorption and shock attenuation. Eng Struct. 2023;280:115687), doi:10.1016/j.engstruct.2023.115687
  • Liu J, Xu S, Wen G, et al. Mechanical behaviour of a creased thin strip. Mech Sci. 2018;9(1):91–102. doi:10.5194/ms-9-91-2018
  • Koehly C, Neuberger H, Bühler L. Fabrication of thin-walled fusion blanket components like flow channel inserts by selective laser melting. Fusion Eng Design. 2019;143:171–179. doi:10.1016/j.fusengdes.2019.03.184
  • Cai C, Zhou J, Wang K, et al. Metamaterial plate with compliant quasi-zero-stiffness resonators for ultra-low-frequency band gap. J Sound Vib. 2022;540:117297), doi:10.1016/j.jsv.2022.117297
  • Lin Q, Zhou J, Wang K, et al. Low-frequency locally resonant band gap of the two-dimensional quasi-zero-stiffness metamaterials. Intern J Mech Sci. 2022;222:107230), doi:10.1016/j.ijmecsci.2022.107230
  • Ji JC, Luo Q, Ye K. Vibration control based metamaterials and origami structures: A state-of-the-art review. Mech Syst Signal Process. 2021;161:107945), doi:10.1016/j.ymssp.2021.107945
  • Qiang W, Zhang J, Karagiozova D, et al. Quasi-Static energy absorption of miura-Ori metamaterials. JOM. 2021;73(12):4177–4187. doi:10.1007/s11837-021-04939-w
  • Lin K, Yuan L, Gu D. Influence of laser parameters and complex structural features on the bio-inspired complex thin-wall structures fabricated by selective laser melting. J Mater Process Technol. 2019;267:34–43. doi:10.1016/j.jmatprotec.2018.12.004
  • Wang Z, Yao S, Liu K, et al. Origami embedded honeycomb with three-axial comparable and improved energy absorption performance. Thin-Walled Struct. 2023;193:111295), doi:10.1016/j.tws.2023.111295
  • Prashanth K, Scudino G, Maity T, et al. Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett. 2017;5(6):386–390. doi:10.1080/21663831.2017.1299808
  • Song C, Yang Y, Liu Y, et al. Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting. Intern J Adv Manufact Technol. 2015a;78(5):885–893. doi:10.1007/s00170-014-6689-3
  • Yu G, Gu D, Dai D, et al. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl Phys A. 2016;122(10):891), doi:10.1007/s00339-016-0428-6
  • Muñiz-Lerma JA, Nommeots-Nomm A, Waters KE, et al. A comprehensive approach to powder feedstock characterization for powder Bed fusion additive manufacturing: A case study on AlSi7Mg. Materials (Basel). 2018;11(12). doi:10.3390/ma11122386
  • Yadroitsev I, Krakhmalev P, Yadroitsava I, et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol. 2013;213(4):606–613. doi:10.1016/j.jmatprotec.2012.11.014
  • Guo M, Ming S, Huang J, et al. A comparative study on the microstructures and mechanical properties of Al-10Si-0.5Mg alloys prepared under different conditions. Metals (Basel). 2022a;12(1):142), doi:10.3390/met12010142
  • Guo YW, Wei W, Shi W, et al. Selective laser melting of Er modified AlSi7Mg alloy: effect of processing parameters on forming quality, microstructure and mechanical properties. Mater Sci Eng A. 2022b;842:143085), doi:10.1016/j.msea.2022.143085
  • Chen H, Gu D, Xiong J, et al. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting. J Mater Process Technol. 2017a;250:99–108. doi:10.1016/j.jmatprotec.2017.06.044
  • Chen Z, Wei Z, Wei P, et al. Experimental research on selective laser melting AlSi10Mg alloys: process, densification and performance. J Mater Eng Perform. 2017b;26(12):5897–5905. doi:10.1007/s11665-017-3044-5
  • Kosiba K, Kononenko DY, Chernyavsky D, et al. Maximizing vitrification and density of a Zr-based glass-forming alloy processed by laser powder bed fusion. J Alloys Compd. 2023;940:168946), doi:10.1016/j.jallcom.2023.168946
  • King WE, Barth HD, Castillo VM, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol. 2014;214(12):2915–2925. doi:10.1016/j.jmatprotec.2014.06.005
  • Gu D, Shen Y, Fang S, et al. Metallurgical mechanisms in direct laser sintering of Cu–CuSn–CuP mixed powder. J Alloys Compd. 2007;438(1):184–189. doi:10.1016/j.jallcom.2006.08.040
  • Simchi A, Asgharzadeh H. Densification and microstructural evaluation during laser sintering of M2 high speed steel powder. Mater Sci Technol. 2004;20(11):1462–1468. doi:10.1179/026708304X3944
  • Zhang B, Liao H, Coddet C. Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mixture. Mater Des. 2012;34:753–758. doi:10.1016/j.matdes.2011.06.061
  • Gu D, Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des. 2009;30(8):2903–2910. doi:10.1016/j.matdes.2009.01.013
  • He Z, Liang J, Zhang H, et al. Formability and microstructure of laser powder bed fused AlSi10Mg alloy sheets under various deformation conditions. Mater Charact. 2023;199:112813), doi:10.1016/j.matchar.2023.112813
  • Abarca Manuel J, Darabi R, Cesar de Sa J, et al. Multi-scale modeling for prediction of residual stress and distortion in Ti–6Al–4V semi-circular thin-walled parts additively manufactured by laser powder bed fusion (LPBF). Thin-Walled Struct. 2023;182:110151), doi:10.1016/j.tws.2022.110151
  • Chen H, Kosiba K, Suryanarayana C, et al. Feedstock preparation, microstructures and mechanical properties for laser-based additive manufacturing of steel matrix composites. Intern Mater Rev. 2023;68(8):1192–1244. doi:10.1080/09506608.2023.2258664
  • Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A. 2016;663:116–125. doi:10.1016/j.msea.2016.03.088
  • Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys Prototyp. 2015;10(2):67–76. doi:10.1080/17452759.2015.1026045
  • Han H, Sorokin V, Tang L, et al. A nonlinear vibration isolator with quasi-zero-stiffness inspired by miura-origami tube. Nonlinear Dyn. 2021;105(2):1313–1325. doi:10.1007/s11071-021-06650-6
  • Limbasiya N, Jain A, Soni H, et al. A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg. J Mater Res Technol. 2022;21:1141–1176. doi:10.1016/j.jmrt.2022.09.092
  • Li Z-N, Yuan B, Wang Y-Z, et al. Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial. Mech Mater. 2019;133:85–101. doi:10.1016/j.mechmat.2019.03.010
  • Le TD, Kwan Ahn K. Experimental investigation of a vibration isolation system using negative stiffness structure. Intern J Mech Sci. 2013;70:99–112. doi:10.1016/j.ijmecsci.2013.02.009
  • Dai D, Gu D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder. Intern J Mach Tools Manuf. 2015;88:95–107. doi:10.1016/j.ijmachtools.2014.09.010
  • Gu D, Hagedorn Y-C, Meiners W, et al. Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior. Compos Sci Technol. 2011;71(13):1612–1620. doi:10.1016/j.compscitech.2011.07.010
  • Huang X, Liu X, Hua H. On the characteristics of an ultra-low frequency nonlinear isolator using sliding beam as negative stiffness. J Mech Sci Technol. 2014;28(3):813–822. doi:10.1007/s12206-013-1205-5
  • Li Z, Mukai K, Zeze M, et al. Determination of the surface tension of liquid stainless steel. J Mater Sci. 2005;40(9):2191–2195. doi:10.1007/s10853-005-1931-x
  • Li Z, Li X, Zhonggang W, et al. Multifunctional sound-absorbing and mechanical metamaterials via a decoupled mechanism design approach. Mater Horiz. 2023b;10(1):75–87. doi:10.1039/D2MH00977C
  • Liu Y, Yang Y, Mai S, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater Des. 2015;87:797–806. doi:10.1016/j.matdes.2015.08.086
  • Nayak SK, Mishra SK, Paul CP, et al. Effect of energy density on laser powder bed fusion built single tracks and thin wall structures with 100 µm preplaced powder layer thickness. Optics Laser Technol. 2020;125:106016), doi:10.1016/j.optlastec.2019.106016
  • Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–477. doi:10.1016/j.pmatsci.2015.03.002
  • Sutton AT, Kriewall CS, Leu MC, et al. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys Prototyp. 2017;12(1):3–29. doi:10.1080/17452759.2016.1250605
  • Wang L-z, Wang S, Wu J-j. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Optics Laser Technol. 2017;96:88–96. doi:10.1016/j.optlastec.2017.05.006
  • Yuan L, Gu D, Lin K, et al. Influence of structural features on processability, microstructures, chemical compositions, and hardness of selective laser melted complex thin-walled components. Intern J Adv Manufact Technol. 2020;109(5):1643–1654. doi:10.1007/s00170-020-05773-1
  • Zhang J, Yuan W, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv Powder Mater. 2022;1(4):100035), doi:10.1016/j.apmate.2022.100035