1,077
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical modelling of the viscoelastic polymer melt flow in material extrusion additive manufacturing

, , , , & ORCID Icon
Article: e2300666 | Received 09 Oct 2023, Accepted 23 Dec 2023, Published online: 08 Jan 2024

References

  • Hull CW. (1986). “Apparatus and method for creating three-dimensional objects.” Google Patents. https://patents.google.com/patent/US5121329A/en.
  • Cano-Vicent A, Tambuwala MM, Hassan SS, et al. Fused deposition modelling: current status, methodology, applications and future prospects. Add Manuf. 2021;47(November):102378, doi:10.1016/J.ADDMA.2021.102378
  • Marion S, Sardo L, Joffre T, et al. First steps of the melting of an amorphous polymer through a hot-end of a material extrusion additive manufacturing. Add Manuf. 2023;65(March):103435, doi:10.1016/J.ADDMA.2023.103435
  • Nzebuka GC, Ufodike CO, Rahman AM, et al. Numerical modeling of the effect of nozzle diameter and heat flux on the polymer flow in fused filament fabrication. J Manuf Process. 2022;82(October):585–600. doi:10.1016/j.jmapro.2022.08.029
  • Pigeonneau F, Xu D, Vincent M, et al. Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer. Add Manuf. 2020;32(August 2019). doi:10.1016/j.addma.2019.101001
  • Ufodike CO, Nzebuka GC. Investigation of thermal evolution and fluid flow in the hot-end of a material extrusion 3D printer using melting model. Add Manuf. 2022;49(January). doi:10.1016/j.addma.2021.102502
  • Serdeczny MP, Comminal R, Mollah MT, et al. Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing. Add Manuf. 2020;36(December). doi:10.1016/j.addma.2020.101454
  • Kattinger J, Ebinger T, Kurz R, et al. Numerical simulation of the complex flow during material extrusion in fused filament fabrication. Add Manuf. 2022;49(January) doi:10.1016/j.addma.2021.102476..
  • Phan DD, Horner JS, Swain ZR, et al. Computational fluid dynamics simulation of the melting process in the fused filament fabrication additive manufacturing technique. Add Manuf. 2020;33(May). doi:10.1016/j.addma.2020.101161
  • Xu X, Ren H, Chen S, et al. Review on melt flow simulations for thermoplastics and their fiber reinforced composites in fused deposition modeling. J Manuf Process. 2023;92(April):272–286. doi:10.1016/J.JMAPRO.2023.02.039
  • Ren H, Yang X, Wang Z, et al. Smart structures with embedded flexible sensors fabricated by fused deposition modeling-based multimaterial 3D printing. Int J Smart Nano Mater. 2022;13(3):447–464. doi:10.1080/19475411.2022.2095454
  • Go J, Schiffres SN, Stevens AG, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Add Manuf. 2017;16(August):1–11. doi:10.1016/j.addma.2017.03.007
  • Peng F, Vogt BD, Cakmak M. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Add Manuf. 2018;22(May):197–206. doi:10.1016/j.addma.2018.05.015
  • Shaqour B, Abuabiah M, Abdel-Fattah S, et al. Gaining a better understanding of the extrusion process in fused filament fabrication 3D printing: a review. Int J Adv Manuf Technol. 2021;114(5–6):1279–1291. doi:10.1007/s00170-021-06918-6
  • Pricci A, Al Islam Ovy SM, Stano G, et al. Semi-analytical and numerical models to predict the extrusion force for silicone additive manufacturing, as a function of the process parameters. Add Manuf Lett. 2023;6(May). doi:10.1016/j.addlet.2023.100147
  • Hart KR, Dunn RM, Sietins JM, et al. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer. 2018;144:192–204. doi:10.1016/j.polymer.2018.04.024
  • Yang F, Pitchumani R. Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules. 2002;35(8):3213–3224. doi:10.1021/ma010858o
  • McIlroy C, Olmsted PD. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer. 2017;123:376–391. doi:10.1016/j.polymer.2017.06.051
  • Serdeczny MP, Comminal R, Mollah MT, et al. Viscoelastic simulation and optimisation of the polymer flow through the hot-end during filament-based material extrusion additive manufacturing. Virtual Phys Prototyp. 2022;17(2):205–219. doi:10.1080/17452759.2022.2028522
  • Christensen R. Theory of viscoelasticity. New York (NY): Elsevier; 1982.
  • Comminal R, Pimenta F, Hattel JH, et al. Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods. J Non-Newtonian Fluid Mech. 2018;252(December 2017):1–18. doi:10.1016/j.jnnfm.2017.12.005
  • Tang D, Marchesini FH, Cardon L, et al. Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios. Phys Fluids. 2019;31(9). doi:10.1063/1.5116850
  • Cao W, Shen Y, Wang P, et al. Viscoelastic modeling and simulation for polymer melt flow in injection/compression molding. J Non-Newtonian Fluid Mech. 2019;274(December):104186, doi:10.1016/J.JNNFM.2019.104186
  • Rothstein JP, McKinley GH. Extensional flow of a polystyrene Boger fluid through a 4 : 1 : 4 axisymmetric contraction/expansion. J Non-Newtonian Fluid Mech. 1999;86(1–2):61–88. doi:10.1016/S0377-0257(98)00202-X
  • Kwon I, Chun MS, Jung HW, et al. Determination of draw resonance onsets in tension-controlled viscoelastic spinning process using transient frequency response method. J Non-Newtonian Fluid Mech. 2016;228(February):31–37. doi:10.1016/J.JNNFM.2015.12.006
  • Lee JS, Shin DM, Song HS, et al. Existence of optimal cooling conditions in the film blowing process. J Non-Newtonian Fluid Mech. 2006;137(1–3):24–30. doi:10.1016/J.JNNFM.2005.12.011
  • Schuller T, Fanzio P, Galindo-Rosales FJ. Analysis of the importance of shear-induced elastic stresses in material extrusion. Add Manuf. 2022: 102952, doi:10.1016/J.ADDMA.2022.102952
  • Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newtonian Fluid Mech. 1982;11(1–2):69–109. doi:10.1016/0377-0257(82)85016-7
  • Hong Y, Mrinal M, Phan HS, et al. In-Situ observation of the extrusion processes of acrylonitrile butadiene styrene and polylactic acid for material extrusion additive manufacturing. Add Manuf. 2022;49(January). doi:10.1016/j.addma.2021.102507
  • Bird RB, Curtiss CF, Armstrong RC, et al. Dynamics of polymer liquids. journal of polymer science part C: polymer letters. New York (NY): John Wiley & Sons; 1987.
  • Bennon WD, Incropera FP. A continuum model for momentum: heat and species transport in binary solid-liquid phase change systems – I. Model formulation. Int J Heat Mass Transfer. 1987;30(10):2161–2170. doi:10.1016/0017-9310(87)90094-9
  • Arrhenius S. Über Die Reaktionsgeschwindigkeit Bei Der Inversion von Rohrzucker Durch Säuren. Z Phys Chem. 1889;4(1):226–248. doi:10.1515/ZPCH-1889-0416
  • Polymaker. (2019). “PolyLiteTM PLA.” https://us.polymaker.com/products/polylite-pla%0Ahttps://polymaker.com/product/polylite-pla/.
  • Voller VR, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transfer. 1987;30(8):1709–1719. doi:10.1016/0017-9310(87)90317-6
  • Marri GK, Balaji C. Liquid crystal thermography based study on melting dynamics and the effect of mushy zone constant in numerical modeling of melting of a phase change material. Int J Therm Sci. 2022;171(June 2021):107176, doi:10.1016/j.ijthermalsci.2021.107176
  • Parry AJ, Eames PC, Agyenim FB, et al. “Modeling of thermal energy storage shell-and- tube heat exchanger modeling of thermal energy storage shell-and-tube heat exchanger. Heat Transfer Eng. 2014: 7632, doi:10.1080/01457632.2013.810057
  • Tutar M, Karakus A. 3-D computational modelling of process condition effects on polymer injection molding. Int Polym Process. 2009;24(5):384–398. doi:10.3139/217.2249
  • Jung UH, Kim JH, Kim JH, et al. Numerical investigation on the melting of circular finned PCM system using CFD & full factorial design. J Mech Sci Technol. 2016;30(6):2813–2826. doi:10.1007/s12206-016-0541-7
  • Fadl M, Eames PC. Numerical investigation of the influence of mushy zone parameter amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems. Appl Therm Eng. 2019;151(June 2018):90–99. doi:10.1016/j.applthermaleng.2019.01.102
  • Nzebuka GC, Waheed MA. Thermal evolution in the direct chill casting of an Al-4 Pct Cu alloy using the low-reynolds number turbulence model. Int J Therm Sci. 2020;147(January):106152, doi:10.1016/J.IJTHERMALSCI.2019.106152
  • Kaviany M. Principles of heat transfer in porous media, Mechanical Engineering Series. New York (NY): Springer US; 1991.
  • Xu P, Yu B. Developing a New form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Res. 2008;31(1):74–81. doi:10.1016/J.ADVWATRES.2007.06.003
  • Nzebuka GC, Ufodike CO, Egole CP. Influence of various aspects of low-reynolds number turbulence models on predicting flow characteristics and transport variables in a horizontal direct-chill casting. Int J Heat Mass Transfer. 2021;179(November):121648, doi:10.1016/J.IJHEATMASSTRANSFER.2021.121648
  • Waheed MA, Nzebuka GC. Analysis of thermally driven flow pattern formation in aluminium DC casting for different Rayleigh numbers and billet diameters. Therm Sci Eng Progr. 2020;18(August):100536, doi:10.1016/J.TSEP.2020.100536
  • Zalba B, Marín JM, Cabeza LF, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–283. doi:10.1016/S1359-4311(02)00192-8
  • Ziskind G. Modeling of heat transfer in phase change materials for thermal energy storage systems. In: Luisa F. Cabeza, editor. Advances in thermal energy storage systems. Duxford: Methods and Applications. LTD; 2020. p. 359–379.
  • Serdeczny MP, Comminal R, Pedersen DB, et al. Experimental and analytical study of the polymer melt flow through the hot-end in material extrusion additive manufacturing. Add Manuf. 2020;32(December 2019):100997, doi:10.1016/j.addma.2019.100997
  • Varchanis S, Tsamopoulos J, Shen AQ, et al. Reduced and increased flow resistance in shear-dominated flows of oldroyd-B fluids. J Non-Newtonian Fluid Mech. 2022;300(February):104698, doi:10.1016/J.JNNFM.2021.104698
  • Ghigo AR, Lagrée PY, Fullana JM. A time-dependent non-newtonian extension of a 1D blood flow model. J Non-Newtonian Fluid Mech. 2018;253(March):36–49. doi:10.1016/J.JNNFM.2018.01.004
  • Keshtiban IJ, Puangkird B, Tamaddon-Jahromi H, et al. Generalised approach for transient computation of start-up pressure-driven viscoelastic flow. J Non-Newtonian Fluid Mech. 2008;151(1–3):2–20. doi:10.1016/J.JNNFM.2008.03.004
  • Ellero M, Tanner RI. SPH simulations of transient viscoelastic flows at Low reynolds number. J Non-Newtonian Fluid Mech. 2005;132(1–3):61–72. doi:10.1016/J.JNNFM.2005.08.012
  • Oliveira PJ. Reduced-Stress method for efficient computation of time-dependent viscoelastic flow with stress equations of FENE-P type. J Non-Newtonian Fluid Mech. 2017;248(October):74–91. doi:10.1016/J.JNNFM.2017.09.001
  • Moore JD, Cui ST, Cochran HD, et al. A molecular dynamics study of a short-chain polyethylene melt: II. Transient response upon onset of shear. J Non-Newtonian Fluid Mech. 2000;93(1):101–116. doi:10.1016/S0377-0257(00)00104-X
  • Tran E, Clarke A. The relaxation time of entangled HPAM solutions in flow. J Non-Newtonian Fluid Mech. 2023;311(August 2022):104954, doi:10.1016/j.jnnfm.2022.104954
  • Baumgaertel M, Winter HH. Interrelation between continuous and discrete relaxation time spectra. J Non-Newtonian Fluid Mech. 1992;44(September):15–36. doi:10.1016/0377-0257(92)80043-W
  • Swallowe GM. Relaxations in polymers. Mech Prop Test Polym: An A–Z Ref. 1999: 195–198. doi:10.1007/978-94-015-9231-4_42
  • Huilgol RR, Phan-Thien N, ed. Constitutive equations derived from microstructures. In: Rheology series. Amsterdam: Elsevier; 1997;6:155–270.
  • Kiparissides C, Pladis P, Moen Ø. From polyethylene rheology curves to molecular weight distributions. Comput Aided Chem Eng. 2006;22(C):241–255. doi:10.1016/S1570-7946(06)80013-1
  • Hofmann J, Maier U, Prage FH, Vogel J. Determination of the Composition and Properties of Polyurethanes. In: Günter Oertel and L. (Lothar) Abele, editors. Polyurethane Handbook : Chemistry, Raw Materials, Processing, Application, Properties, New York (NY): Hanser, 1994; 45:479–549.
  • Moretti M, Rossi A, Senin N. In-Process simulation of the extrusion to support optimisation and real-time monitoring in fused filament fabrication. Add Manuf. 2021;38(October 2020):101817, doi:10.1016/j.addma.2020.101817
  • Xia H, Lu J, Tryggvason G. A numerical study of the effect of viscoelastic stresses in fused filament fabrication. Comput Methods Appl Mech Eng. 2019;346(April):242–259. doi:10.1016/j.cma.2018.11.031
  • Mieras HJMA, Van Rijn CFH. Elastic behaviour of some polymer melts. Nature. 1968;218(5144):865–866. doi:10.1038/218865b0
  • James DF. N1 stresses in extensional flows. J Non-Newtonian Fluid Mech. 2016;232(June):33–42. doi:10.1016/j.jnnfm.2016.01.012