816
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High-efficiency pentafluorostilbene-based photocatalysts dedicated to preparing fluorescent 3D printed polymer nanocomposites

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: e2301030 | Received 27 Oct 2023, Accepted 27 Dec 2023, Published online: 11 Jan 2024

References

  • Kaya K, Koyuncu S, Yagci Y. Photoinduced synthesis of poly(N-ethylcarbazole) from phenacylium salt without conventional catalyst and/or monomer. Chem Commun. 2019;55:11531–11534. doi:10.1039/C9CC04968A
  • Topa M, Ortyl J. Moving towards a finer way of light-cured resin-based restorative dental materials: recent advances in photoinitiating systems based on iodonium salts. Materials. 2020;13:4093, doi:10.3390/ma13184093
  • Balcerak A, Kabatc J, Czech Z, et al. High-performance UV-vis light induces radical photopolymerization using novel 2-aminobenzothiazole-based photosensitizers. Materials. 2021;14:7814. doi:10.3390/ma14247814
  • Voet VSD, Guit J, Loos K. .Sustainable photopolymers in 3D printing: a review on biobased, biodegradable, and recyclable alternatives Macromol Rapid Commun. 2021;42:2000475. doi:10.1002/marc.202000475
  • Bao Y, Paunović N, Leroux JC. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv Funct Mater. 2022;32:2109864, doi:10.1002/adfm.202109864
  • Bagheri A, Jin J. Photopolymerization in 3D printing. ACS Appl Polym Mater. 2019;1:593–611. doi:10.1021/acsapm.8b00165
  • Jankowska M, Chachaj-Brekiesz A, Trembecka-Wójciga K, et al. Novel multi-material photo-curable resins containing high-performance photoinitiating systems and nano additives dedicated to 3D-VAT printing. Polym Chem. 2023;14:2088–2106. doi:10.1039/D2PY01583H
  • Štaffová M, Ondreáš F, Svatík J, et al. 3D printing and post-curing optimization of photopolymerized structures: basic concepts and effective tools for improved thermomechanical properties. Polym Test. 2022;108:107499. doi:10.1016/j.polymertesting.2022.107499
  • Hola E, Topa M, Chachaj-Brekiesz A, et al. New, highly versatile bimolecular photoinitiating systems for free-radical, cationic and thiol–ene photopolymerization processes under low light intensity UV and visible LEDs for 3D printing application. RSC Adv. 2020;10:7509–7522. doi:10.1039/C9RA10212D
  • Lago MA, Rodríguez-Bernaldo de Quirós A, Sendón R, et al. Photoinitiators: a food safety review. Food Addit Contam Part A. 2015;32:779–798.
  • Arman Kandirmaz E, Kayaman Apohan N, Gençoğlu EN. Preparation of novel thioxanthone based polymeric photoinitiator for flexographic varnish and determination of their migration behavior. Prog Org Coat. 2018;119:36–43. doi:10.1016/j.porgcoat.2018.02.012
  • Hola E, Pilch M, Galek M, et al. New versatile bimolecular photoinitiating systems based on amino-m-terphenyl derivatives for cationic, free-radical and thiol–ene photopolymerization under low intensity UV-A and visible light sources. Polym Chem. 2020;11:480–495. doi:10.1039/C9PY01091B
  • Tomal W, Pilch M, Chachaj-Brekiesz A, et al. Photoinitiator-catalyst systems based on meta-terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing processes. Polym Chem. 2020;11:4604–4621. doi:10.1039/D0PY00597E
  • Lu H, Zhu X. Synthesis of D-π-A-π-D photoinitiator with high-photoinitiation efficiency by restricting photoinduced isomerization process. J Appl Polym Sci. 2022;139:5.
  • Chi T, Somers P, Wilcox DA, et al. Tailored thioxanthone-based photoinitiators for two-photon-controllable polymerization and nanolithographic printing. J Polym Sci B Polym Phys. 2019;57:1462–1475. doi:10.1002/polb.24891
  • Borys F, Tobiasz P, Poterała M, et al. Development of novel derivatives of stilbene and macrocyclic compounds as potent of anti-microtubule factors. Biomed. Pharmacother. 2021: 133:110973.
  • De Filippis B, Ammazzalorso A, Amoroso R, et al. Stilbene derivatives as new perspective in antifungal medicinal chemistry. Drug Dev Res. 2019;80:285–293. doi:10.1002/ddr.21525
  • Yang T, Fang L, Rimando AM, et al. A stilbenoid-specific prenyltransferase utilizes dimethylallyl pyrophosphate from the plastidic terpenoid pathway. Plant Physiol. 2016;171:2483–2498. doi:10.1104/pp.16.00610
  • Pecyna P, Wargula J, Murias M, et al. More than resveratrol: new insights into stilbene-based compounds. Biomolecules. 2020;10:1–40. doi:10.3390/biom10081111
  • Mikstacka R, Stefański T, Różański J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell Mol Biol Lett. 2013;18:368–397. doi:10.2478/s11658-013-0094-z
  • Krohn OA, Quick M, Ioffe IN, et al. Time-resolved photochemistry of stiffened stilbenes. J Phys Chem B. 2019;123:4291–4300. doi:10.1021/acs.jpcb.9b00784
  • Raucci U, Weir H, Bannwarth C, et al. Chiral photochemistry of achiral molecules. Nat Commun. 2022;13:1, doi:10.1038/s41467-022-29662-1
  • Weir H, Williams M, Parrish RM, et al. Nonadiabatic dynamics of photoexcited cis-stilbene using Ab initio multiple spawning. J Phys Chem B. 2020;124:5476–5487. doi:10.1021/acs.jpcb.0c03344
  • Wang Y, Liu Y, Bersuker IB. Sudden polarization and zwitterion formation as a pseudo-Jahn–Teller effect: a new insight into the photochemistry of alkenes. Phys Chem Chem Phys. 2019;21:10677–10692. doi:10.1039/C9CP01023H
  • Krishnan SB, Clark RJ, Lin X, et al. α-Methylstilbene Isomers: Relationship of Structure to Photophysics and Photochemistry. J Phys Chem A. 2022;126:8976–8987. doi:10.1021/acs.jpca.2c06319
  • Hsu YF, Hong JW, Yang JS. A highly fluorescent cis-stiff-stilbene. ChemPhotoChem. 2023;7:1.
  • Liu J, Li T, Li R, et al. Hepatic organoid-based high-content imaging boosts evaluation of stereoisomerism-dependent hepatotoxicity of stilbenes in herbal medicines. Front Pharmacol. 2022;13:862830, doi:10.3389/fphar.2022.862830
  • Zhao Y, Yang Z, Zhang Z, et al. The first chromosome-level Fallopia multiflora genome assembly provides insights into stilbeny biosynthesis. Hortic Res. 2023;10:5.
  • Wu JY, Ding HY, Wang TY, et al. A new stilbene glucoside from biotransformation-guided purification of Chinese herb Ha-Soo-Oh. Plants. 2022;11:17.
  • Chen JY, Lian X, Fan YW, et al. Four new stilbenes and one new flavonoid with potential antibacterial and anti-SARS-CoV-2 activity from Cajanus cajan. J Nat Med. 2023;77:858–866. doi:10.1007/s11418-023-01727-5
  • Al-Khayri JM, Mascarenhas R, Harish HM, et al. Stilbenes, a versatile class of natural metabolites for inflammation—an overview. Molecules. 2023;28:9.
  • Li X, Cai X, Zeng Q, et al. Exploring the mechanism of stilbenes to quench singlet oxygen based on the key structures of resveratrol and its analogues. Food Chem. 2023;403:134350, doi:10.1016/j.foodchem.2022.134350
  • Salas H, Gutiérrez-Bouzán C, López-Grimau V, et al. Respirometric study of optical brighteners in textile wastewater. Materials (Basel). 2019;12:5. doi:10.3390/ma12050785
  • Dekanić T, Pušić T, Soljačić I, et al. The influence of iron ions on optical brighteners and their application to cotton fabrics. Materials (Basel). 2021;14:17, doi:10.3390/ma14174995
  • Aneklaphakij C, Chamnanpuen P, Bunsupa S, et al. Recent green technologies in natural stilbenoids production and extraction: the next chapter in the cosmetic industry. Cosmetics. 2022;9:5. doi:10.3390/cosmetics9050091
  • Krambeck K, Oliveira A, Santos D, et al. Identification and quantification of stilbenes (piceatannol and resveratrol) in Passiflora edulis by-products. Pharmaceuticals. 2020;13:4, doi:10.3390/ph13040073
  • Dou J, Sui M, Malinen K, et al. Spruce bark stilbenes as a nature-inspired sun blocker for sunscreens. Green Chem. 2022;24:2962–2974. doi:10.1039/D2GC00287F
  • Choiri S, Fitriastuti R, Faradiva FZ, et al. Antioxidant activity and nano delivery of the most frequently applied stilbene derivates: a brief and recent review. Pharm Sci. 2022;28:365–375.
  • Digafie Z, Melaku Y, Belay Z, et al. Synthesis, molecular docking analysis, and evaluation of antibacterial and antioxidant properties of stilbenes and pinacol of quinolines. Adv Pharmacol Pharm Sci. 2021;2021:6635270.
  • Piekuś-Słomka N, Mikstacka R, Ronowicz J, et al. Hybrid cis-stilbene molecules: novel anticancer agents. Int J Mol Sci. 2019;20:6, doi:10.3390/ijms20061300
  • Yousuf M, Jinka S, Adhikari SS, et al. Methoxy-enriched cationic stilbenes as anticancer therapeutics. Bioorg Chem. 2020;98:103719, doi:10.1016/j.bioorg.2020.103719
  • Levenson AS. Metastasis-associated protein 1-mediated antitumor and anticancer activity of dietary stilbenes for prostate cancer chemoprevention and therapy. Semin Cancer Biol. 2022;80:107–117. doi:10.1016/j.semcancer.2020.02.012
  • Tan YJ, Ali A, Tee SY, et al. Galloyl esters of trans-stilbenes are inhibitors of FASN with anticancer activity on non-small cell lung cancer cells. Eur J Med Chem. 2019;182:111597, doi:10.1016/j.ejmech.2019.111597
  • O’Croinin C, Guerra AG, Doschak MR, et al. Therapeutic potential and predictive pharmaceutical modeling of stilbenes in Cannabis sativa. Pharmaceutics. 2023;15:7.
  • Jesus A, Sebastião AI, Brites G, et al. A hydrophilic sulfated resveratrol derivative for topical application: sensitization and anti-allergic potential. Molecules. 2023;28:7. doi:10.3390/molecules28073158
  • Bakrim S, Machate H, Benali T, et al. Natural sources and pharmacological properties of pinosylvin. Plants. 2022;11:12. doi:10.3390/plants11121541
  • Chen CT, Fang PH, Jou JH, et al. Spirally configured cis-Stilbene/fluorene (STIF), 10,11-benzo-, and imidazole-fused STIF hybrids as electron-transporting materials for organic light-emitting diode applications. Chem Asian J. 2023;18:e202300482, doi:10.1002/asia.202300482
  • Wang H, Wu H, Bian G, et al. An anthracene-based bis-stilbene derivative as luminescent materials for organic light emitting diodes. Materials (Basel). 2023;16:10.
  • Ruan S-B, Chan C-Y, Ye H, et al. A spirofluorene-end-capped bis-stilbene derivative with a low amplified spontaneous emission threshold and balanced hole and electron mobilities. Opt Mater (Amst). 2020;100:109636, doi:10.1016/j.optmat.2019.109636
  • Ashassi-Sorkhabi H, Salehi-Abar P. Evaluation of the performance of stilbene-based hole transport materials with an emphasis on their configuration for use in perovskite solar cells. Sol Energy. 2019;188:951–957. doi:10.1016/j.solener.2019.06.076
  • Sathiyan G, Dasi G, Ramasamy SK, et al. Stilbene-containing carbazole-based fullerene derivatives as alternative electron acceptor for efficient organic solar cells. Appl Nanosci. 2023;13:4101–4108. doi:10.1007/s13204-022-02707-z
  • Park IH, Chu L, Leng K, et al. Highly stable two-dimensional Tin(II) iodide hybrid organic–inorganic perovskite based on stilbene derivative. Adv Funct Mater. 2019;29:39.
  • Strehmel B, Malpert JH, Sarker AM, et al. New intramolecular fluorescence probes that monitor photoinduced radical and cationic cross-linking. Macromolecules. 1999;32:7476–7482. doi:10.1021/ma990773b
  • Ortyl J, Sawicz K, Popielarz R. Performance of amidocoumarins as probes for monitoring of cationic photopolymerization of monomers by fluorescence probe technology. J Polym Sci A Polym Chem. 2010;48:4522–4528. doi:10.1002/pola.24243
  • Ortyl J, Galica M, Popielarz R, et al. Application of a carbazole derivative as a spectroscopic fluorescent probe for real time monitoring of cationic photopolymerization. Pol. J. Chem. Technol. 2014;16:75–80. doi:10.2478/pjct-2014-0013
  • Ortyl J, Fiedor P, Chachaj-Brekiesz A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. The applicability of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile sensors for monitoring different types of photopolymerization processes and acceleration of cationic and free-radical photopolymerization under near UV light. Sensors (Switzerland). 2019;19:7, doi:10.3390/s19071668
  • Ortyl J, Galek M, Milart P, et al. Aminophthalimide probes for monitoring of cationic photopolymerization by fluorescence probe technology and their effect on the polymerization kinetics. Polym Test. 2012;31:466–473. doi:10.1016/j.polymertesting.2012.01.008
  • Ortyl J, Popielarz R. The performance of 7-hydroxycoumarin-3-carbonitrile and 7-hydroxycoumarin-3-carboxylic acid as fluorescent probes for monitoring of cationic photopolymerization processes by FPT. J Appl Polym Sci. 2013;128:1974–1978, doi:10.1002/app.38378
  • Ortyl J, Milart P, Popielarz R. Applicability of aminophthalimide probes for monitoring and acceleration of cationic photopolymerization of epoxides. Polym Test. 2013;32:708–715. doi:10.1016/j.polymertesting.2013.03.009
  • Tomal W, Krok D, Chachaj-Brekiesz A, et al. Beneficial stilbene-based derivatives: from the synthesis of new catalytic photosensitizer to 3D printouts and fiber-reinforced composites. Eur Polym J. 2021;156:110603, doi:10.1016/j.eurpolymj.2021.110603
  • Petko F, Hola E, Jankowska M, et al. 3D-VAT printing of nanocomposites by photopolymerisation processes using amino-meta-terphenyls as visible light-absorbing photoinitiators. Virtual Phys Prototyp. 2023;18:1, doi:10.1080/17452759.2023.2244936
  • Al Mousawi A, Dietlin C, Graff B, et al. Meta-terphenyl derivative/iodonium salt/9H-carbazole-9-ethanol photoinitiating systems for free radical promoted cationic polymerization upon visible lights. Macromol Chem Phys. 2016;217:1955–1965. doi:10.1002/macp.201600224
  • Fu J, Liu W, Hao Z, et al. Characterization of a low shrinkage dental composite containing bismethylene spiroorthocarbonate expanding monomer. Int J Mol Sci. 2014;15:2400–2412. doi:10.3390/ijms15022400
  • Danso R, Hoedebecke B, Whang K, et al. Development of an oxirane/acrylate interpenetrating polymer network (IPN) resin system. Dent Mater. 2018;34:1459–1465. doi:10.1016/j.dental.2018.06.013
  • Bennett J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit Manuf. 2017;18:203–212.
  • Bureš F. Fundamental aspects of property tuning in push–pull molecules. RSC Adv. 2014;4:58826–58851. doi:10.1039/C4RA11264D
  • Cho JD, Kim HK, Kim YS, et al. Dual curing of cationic UV-curable clear and pigmented coating systems photosensitized by thioxanthone and anthracene. Polym Test. 2003;22:633–645. doi:10.1016/S0142-9418(02)00169-1
  • Guy N, Giani O, Blanquer S, et al. Photoinduced ring-opening polymerizations. Prog Org Coat. 2021;153:106159.
  • Ortyl J, Wilamowski J, Milart P, et al. Relative sensitization efficiency of fluorescent probes/sensitizers for monitoring and acceleration of cationic photopolymerization of monomers. Polym Test. 2015;48:151–159. doi:10.1016/j.polymertesting.2015.10.006
  • Klikovits N, Knaack P, Bomze D, et al. Novel photoacid generators for cationic photopolymerization. Polym Chem. 2017;8:4414–4421. doi:10.1039/C7PY00855D
  • Li Y, Shaukat U, Schlögl S, et al. A pyrrole–carbazole photoinitiator for radical and cationic visible light LED photopolymerization. Eur Polym J. 2023;182:111700, doi:10.1016/j.eurpolymj.2022.111700
  • Lang M, Hirner S, Wiesbrock F, et al. A review on modeling cure kinetics and mechanisms of photopolymerization. Polymers (Basel). 2022;14:10.
  • Chen M, Zhong M, Johnson JA. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem Rev. 2016;116:10167–10211. doi:10.1021/acs.chemrev.5b00671
  • Chatani S, Kloxin CJ, Bowman CN. The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polym Chem. 2014;5:2187–2201. doi:10.1039/C3PY01334K
  • Shao J, Huang Y, Fan Q. Visible light initiating systems for photopolymerization: status, development and challenges. Polym Chem. 2014;5:4195–4210. doi:10.1039/C4PY00072B
  • Wang P, Li J, Yang J, et al. Enabling 3D multilayer electronics through the hybrid of vat photopolymerization and laser-activated selective metallization. Addit Manuf. 2023;74:103717.
  • Muflikhun MA, Syahril M, Mamba’udin A, et al. A novel of hybrid laminates additively manufactured via material extrusion – vat photopolymerization. J Eng Res. 2023;1:100146, doi:10.1016/j.jer.2023.100146
  • Fantoni A, Ecker J, Ahmadi M, et al. Green monomers for 3D printing: epoxy-methacrylate interpenetrating polymer networks as a versatile alternative for toughness enhancement in additive manufacturing. ACS Sustain Chem Eng. 2023;11:12004–12013. doi:10.1021/acssuschemeng.3c02194
  • Bardakova KN, Kholkhoev BC, Farion IA, et al. 4D printing of shape-memory semi-interpenetrating polymer networks based on aromatic heterochain polymers. Adv Mater Technol. 2022;7:1, doi:10.1002/admt.202100790
  • Aldeen TS, Ahmed Mohamed HE, Maaza M. ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids. 2022;160:110313, doi:10.1016/j.jpcs.2021.110313
  • Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7:219–242.
  • Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Adv. 2022;4:1868–1925. doi:10.1039/D1NA00880C
  • EL-Dafrawy SM, Tarek M, Samra S, et al. Synthesis, photocatalytic and antidiabetic properties of ZnO/PVA nanoparticles. Sci Rep. 2021;11:1, doi:10.1038/s41598-021-90846-8
  • Korčušková M, Sevriugina V, Ondreáš F, et al. Photoactivity, conversion kinetics, nanoreinforcement, post-curing, and electric/dielectric properties of functional 3D printable photopolymer resin filled with bare and alumina-doped ZnO nanoparticles. Polym Test. 2022;116:107798. doi:10.1016/j.polymertesting.2022.107798
  • Zboncak M, Ondreas F, Uhlir V, et al. Translation of segment scale stiffening into macroscale reinforcement in polymer nanocomposites. Polym Eng Sci. 2020;60:587–596. doi:10.1002/pen.25317
  • Jancar J, Ondreas F, Lepcio P, et al. Mechanical properties of glassy polymers with controlled NP spatial organization. Polym Test. 2020;90:106640. doi:10.1016/j.polymertesting.2020.106640.