1,322
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure and property enhancement of 7075 aluminium alloy via laser metal deposition augmented by in-situ ultrasonic vibration

, , , &
Article: e2301482 | Received 01 Nov 2023, Accepted 29 Dec 2023, Published online: 11 Jan 2024

References

  • Lu C, Jia X, Lee J, et al. Knowledge transfer using Bayesian learning for predicting the process-property relationship of inconel alloys obtained by laser powder bed fusion. Virtual Phys Prototyp. 2022;17(4):787–805. doi:10.1080/17452759.2022.2068447
  • Savinov R, Wang Y, Shi J. Microstructure and properties of CeO2-doped CoCrFeMnNi high entropy alloy fabricated by laser metal deposition. J Manuf Process. 2020;56:1245–1251. doi:10.1016/j.jmapro.2020.04.018
  • Lv H, Li Z, Li X, et al. Effect of vanadium content on the microstructure and mechanical properties of IN718 alloy by laser cladding. Materials (Basel). 2021;14(9):2362. doi:10.3390/ma14092362
  • Kumar SP, Elangovan S, Mohanraj R, et al. A review on properties of inconel 625 and inconel 718 fabricated using direct energy deposition. Mater Today Proc. 2021;46:7892–7906. doi:10.1016/j.matpr.2021.02.566
  • Wang Y, Roy S, Choi H, et al. Cracking suppression in additive manufacturing of hard-to-weld nickel-based superalloy through layer-wise ultrasonic impact peening. J Manuf Process. 2022;80:320–327. doi:10.1016/j.jmapro.2022.05.041
  • Jeong W, Kwon Y, Kim D. Three-dimensional printing of tungsten structures by directed energy deposition. Mater Manuf Processes. 2019;34(9):986–992. doi:10.1080/10426914.2019.1594253
  • Marques DA, Oliveira JP, Baptista AC. A short review on the corrosion behaviour of wire and arc additive manufactured materials. Metals (Basel). 2023;13(4):641. doi:10.3390/met13040641
  • Felice IO, Shen J, Barragan C, et al. Wire and arc additive manufacturing of Fe-based shape memory alloys: microstructure, mechanical and functional behavior. Mater Des. 2023;231:112004. doi:10.1016/j.matdes.2023.112004
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369. doi:10.1038/nature23894
  • Wang Z, Wang X, Chen X, et al. Complete columnar-toequiaxed transition and significant grain refinement in an aluminium alloy by adding Nb particles through laser powder bed fusion. Addit Manuf. 2022;51:102615. doi:10.1016/j.addma.2022.102615
  • Sadhu, A, Choudhary, A, Sarkar, S, et al.. A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60%WC ceramic coating on inconel 718. Surf Coat Technol. (2020); 389: 125646–125646. doi:10.1016/j.surfcoat.2020.125646
  • Todaro CJ, Easton MA, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun. 2020;11(1):142. doi:10.1038/s41467-019-13874-z
  • Bermingham MJ, StJohn DH, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 2019;168:261–274. doi:10.1016/j.actamat.2019.02.020
  • Carroll BE, Palmer TA, Beese AM. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015;87:309–320. doi:10.1016/j.actamat.2014.12.054
  • Jin P, Liu Y, Sun Q. Evolution of crystallographic orientation, columnar to equiaxed transformation and mechanical properties realized by adding TiCps in wire and arc additive manufacturing 2219 aluminum alloy. Additive Manufacturing. 2021;39:101878.
  • Lee T-G, Jeong W, Chung S, et al. Role of B4C in the directed energy deposition of aluminum alloy 6061/B4C composite using core-shell powder for crack annihilation, pore mitigation, and grain refinement. Additive Manufacturing. 2023;72:103622. doi:10.1016/j.addma.2023.103622
  • Wang L, Wu T, Wang D, et al. A novel heterogeneous multi-wire indirect arc directed energy deposition for in-situ synthesis Al-Zn-Mg-Cu alloy: process, microstructure and mechanical properties. Additive Manufacturing. 2023;72:103639. doi:10.1016/j.addma.2023.103639
  • Wang X, Xu L, Zhao L, et al. Defect-related strain-controlled high-temperature fatigue behavior in additive manufacturing hastelloy X assisted with ultrasonic micro-forging treatment. Int J Fatigue. 2023;172:107607. doi:10.1016/j.addma.2023.103639
  • Montero-Sistiaga ML, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting. J Mater Process Technol. 2016;238:437–445. doi:10.1016/j.jmatprotec.2016.08.003
  • Zhou SY, Su Y, Wang H, et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2. Additive Manufacturing. 2020;36:101458. doi:10.1016/j.addma.2020.101458
  • Liu P, Hu J, Li H, et al. Effect of heat treatment on microstructure, hardness and corrosion resistance of 7075 Al alloys fabricated by SLM. J Manuf Process. 2020;60:578–585. doi:10.1016/j.jmapro.2020.10.071
  • Su Y, Wang Y, Shi J. Microstructure and mechanical properties of laser DED produced crack-free Al 7075 alloy: effect of process parameters and heat treatment. Mater Sci Eng A. 2022;857:144075. doi:10.1016/j.msea.2022.144075
  • Kaufmann N, Imran M, Wischeropp TM, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Phys Procedia. 2016;83:918–926. doi:10.1016/j.phpro.2016.08.096
  • Ghosh A, Ghosh M. Microstructure and texture development of 7075 alloy during homogenisation. Philos Mag. 2018;98(16):1470–1490. doi:10.1080/14786435.2018.1439596
  • Liu Z, Rakita M, Wang X, et al. In situ formed Al3Ti particles in Al alloy matrix and their effects on the microstructure and mechanical properties of 7075 alloy. J Mater Res. 2014;29(12):1354–1361. doi:10.1557/jmr.2014.123
  • Cui G, Bao C, Zhang M, et al. Effects of thermal aging on mechanical properties and microstructures of an interstitial high entropy alloy with ultrasonic surface mechanical attrition treatment. Mater Sci Eng A. 2022;838:142755. doi:10.1016/j.msea.2022.142755
  • Gu GH, Kim RE, Kim ES, et al. Multi-layered heterostructured CoCrFeMnNi high-entropy alloy processed using direct energy deposition and ultrasonic nanocrystalline surface modification. J Mater Res Technol. 2020;21:2880–2890. doi:10.1016/j.jmrt.2022.10.099
  • Ran M, Wang Q, You SL, et al. Effect of laser shock peening and surface mechanical attrition treatment on the oxidation resistance of a 20Cr-25Ni-Nb stainless steel. Mater Charact. 2023;203:113065–113065. doi:10.1016/j.matchar.2023.113065
  • AlMangour B, Yang J. Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des. 2016;110:914–924. doi:10.1016/j.matdes.2016.08.037
  • Uzan NE, Ramati S, Shneck R, et al. On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). Additive Manufacturing. 2018;21:458–464. doi:10.1016/j.addma.2018.03.030
  • Retraint D, Portella Q, Chemkhi M. Residual stresses analysis in AISI 316L processed by selective laser melting (SLM) treated by mechanical post-processing treatments. Materials Research Proceedings. 2018;6.271–276. doi:10.21741/9781945291890-43
  • Tian Y, Shen J, Hu S, et al. Effects of ultrasonic peening treatment on surface quality of CMT-welds of Al alloys. J Mater Process Technol. 2018;254:193–200. doi:10.1016/j.jmatprotec.2017.11.029
  • Xing X, Duan X, Sun X, et al. Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique. Materials (Basel). 2019;12(3):455. doi:10.3390/ma12030455
  • Lan L, Jin X, Gao S, et al. Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening. J Mater Sci Technol. 2020;50:153–161. doi:10.1016/j.jmst.2019.11.039
  • Sun R, Li L, Zhu Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. J Alloys Compd. 2018;747:255–265. doi:10.1016/j.jallcom.2018.02.353
  • Sidhu KS, Wang Y, Shi J, et al. (2019). Effect of post laser shock peening on microstructure and mechanical properties of inconel 718 by selective laser melting. In International Manufacturing Science and Engineering Conference (Vol. 58752, p. V002T03A071). American Society of Mechanical Engineers. doi:10.1115/MSEC2019-2893
  • Wang Y, Shi J. Microstructure and properties of inconel 718 fabricated by directed energy deposition with in-situ ultrasonic impact peening. Metallurgical and Materials Transactions B. 2019;50:2815–2827. doi:10.1007/s11663-019-01672-3
  • Wang Y, Shi J. Recrystallization behavior and tensile properties of laser metal deposited inconel 718 upon in-situ ultrasonic impact peening and heat treatment. Mater Sci Eng A. 2020;786:139434. doi:10.1016/j.msea.2020.139434
  • Gou J, Wang Z, Hu S, et al. Effects of ultrasonic peening treatment in three directions on grain refinement and anisotropy of cold metal transfer additive manufactured Ti-6Al-4V thin wall structure. J Manuf Process. 2020;54:148–157. doi:10.1016/j.jmapro.2020.03.010
  • Gale J, Achuhan A. Application of ultrasonic peening during DMLS production of 316L stainless steel and its effect on material behavior. Rapid Prototyp J. 2017;23(6):1185–1194. doi:10.1108/RPJ-09-2016-0140
  • Martina F, Roy MJ, Szost BA, et al. Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti–6Al–4V components. Mater Sci Technol. 2016;32(14):1439–1448. doi:10.1080/02670836.2016.1142704
  • Hönnige JR, Colegrove PA, Ahmad B, et al. Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling. Mater Des. 2018;150:193–205. doi:10.1016/j.matdes.2018.03.065
  • Zhao W, Zha GC, Xi MZ, et al. Effects of synchronous rolling on microstructure, hardness, and wear resistance of laser multilayer cladding. J Mater Eng Perform. 2018;27:1746–1752. doi:10.1007/s11665-018-3286-x
  • Ning F, Cong W. Microstructures and mechanical properties of Fe-Cr stainless steel parts fabricated by ultrasonic vibration-assisted laser engineered net shaping process. Mater Lett. 2016;179:61–64. doi:10.1016/j.matlet.2016.05.055
  • Ning F, Hu Y, Liu Z, et al. Ultrasonic vibration-assisted laser engineered net shaping of inconel 718 parts: a feasibility study. Procedia Manufacturing. 2017;10:771–778. doi:10.1016/j.promfg.2017.07.074
  • Cong W, Ning F. A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel. Int J Mach Tools Manuf. 2017;121:61–69. doi:10.1016/j.ijmachtools.2017.04.008
  • Zhou L, Chen S, Ma M, et al. The dynamic recrystallization mechanism of ultrasonic power on non-contact ultrasonic-assisted direct laser deposited alloy steel. Mater Sci Eng A. 2022;840:142971. doi:10.1016/j.msea.2022.142971
  • Zhang Y, Guo Y, Chen Y, et al. Microstructure and mechanical properties of Al-12Si alloys fabricated by ultrasonic-assisted laser metal deposition. Materials (Basel). 2020;13(1):126. doi:10.3390/ma13010126
  • Zhang D, Li Y, Wang H, et al. Ultrasonic vibration-assisted laser directed energy deposition in-situ synthesis of NiTi alloys: effects on microstructure and mechanical properties. J Manuf Process. 2020;60:328–339. doi:10.1016/j.jmapro.2020.10.058
  • Shi J, Wang Y. Development of metal matrix composites by laser-assisted additive manufacturing technologies: a review. J Mater Sci. 2020;55(23):9883–9917. doi:10.1007/s10853-020-04730-3
  • Ning F, Hu Y, Cong W. Microstructure and mechanical property of TiB reinforced Ti matrix composites fabricated by ultrasonic vibration-assisted laser engineered net shaping. Rapid Prototyp J. 2019;25(3):581–591. doi:10.1108/RPJ-05-2018-0118
  • Qin LY, Wang W, Yang G. Experimental study on laser metal deposition of FGMs with ultrasonic vibration. Appl Mech Mater. 2013;271:131–135. doi:10.4028/www.scientific.net/AMM.271-272.131
  • Yi Z, Song C, Zhang G, et al. Microstructure and wear property of ZrO2-added NiCrAlY prepared by ultrasonic-assisted direct laser deposition. Materials (Basel). 2021;14(19):5785. doi:10.3390/ma14195785
  • Liu Y, Wang Y, Savinov R, et al. Epitaxial growth of a single-crystal nickel-based superalloy during laser melting with high-power flat-top laser. Opt Laser Technol. 2021;144:107444. doi:10.1016/j.optlastec.2021.107444
  • Ghasri-Khouzani M, Karimialavijeh H, Tangestani R, et al. Single-track study of A20X aluminum alloy fabricated by laser powder bed fusion: modeling and experiments. Opt Laser Technol. 2023;162:109276–109276. doi:10.1016/j.optlastec.2023.109276
  • Khalifa W, Tsunekawa Y, Okumiya M. Effect of ultrasonic treatment on the Fe-intermetallic phases in ADC12 die cast alloy. J Mater Process Technol. 2010;210(15):2178–2187. doi:10.1016/j.jmatprotec.2010.08.008
  • Gonzalez LC, Tuominen J, Ahmed S, et al. Directed energy deposition of AA7075 - effect of TiC nanoparticles on microstructure. Results in Materials. 2022;16:100341. doi:10.1016/j.rinma.2022.100341
  • Guo Y, Wei W, Shi W, et al. Effect of Er and Zr additions and aging treatment on grain refinement of aluminum alloy fabricated by laser powder bed fusion. J Alloys Compd. 2022;912:165237. doi:10.1016/j.jallcom.2022.165237
  • Griffiths S, Croteau JR, Rossell MD, et al. Coarsening- and creep resistance of precipitation-strengthened Al–Mg–Zr alloys processed by selective laser melting. Acta Mater. 2020;188:192–202. doi:10.1016/j.actamat.2020.02.008
  • Kim J, Jhang K, Kim C. Dependence of nonlinear ultrasonic characteristic on second-phase precipitation in heat-treated Al 6061-T6 alloy. Ultrasonics. 2018;82:84–90. doi:10.1016/j.ultras.2017.07.015
  • Wang P, Li HC, Prashanth KG, et al. Selective laser melting of Al-Zn-Mg-Cu: heat treatment, microstructure and mechanical properties. J Alloys Compd. 2017;707:287–290. doi:10.1016/j.jallcom.2016.11.210
  • Zhou L, Chen S, Jia W, et al. Effects of preheating-ultrasonic synergistic on the microstructure and strength-ductility of 24 CrNiMoY alloy steel by laser directed energy deposition. Mater Sci & Eng A: Struct Mater: Prop Microstruct. Process. 2023;863:144463. doi:10.1016/j.msea.2022.144463
  • Wang Z, Jiang F, Guo C, et al. Effects of ultrasonic vibration on microstructure and mechanical propertiesof 1Cr12Ni3MoVN alloy fabricated by directed energy deposition. Ultrasonics. 2023;132:106989. doi:10.1016/j.ultras.2023.106989
  • Wang T, Mazánová V, Liu X. Ultrasonic effects on gas tungsten arc based wire additive manufacturing of aluminum matrix nanocomposite. Mater Des. 2022;214:110393.
  • Todaro CJ, Easton MA, Qiu D, et al. Grain refinement of stainless steel in ultrasound-assisted additive manufacturing. Additive Manufacturing. 2021;37:101632. doi:10.1016/j.addma.2020.101632
  • Yazdian N, Karimzadeh F, Tavoosi M. Microstructural evolution of nanostructure 7075 aluminum alloy during isothermal annealing. J Alloys Compd. 2010;493(1):137–141. doi:10.1016/j.jallcom.2009.12.144
  • Nama HAA, Esen İ, Ahlatcı H, et al. Effect of aging heat treatment on wear behavior and microstructure characterization of newly developed Al7075+Ti alloys. Materials (Basel). 2023;16(12):4413. doi:10.3390/ma16124413
  • Savinov R, Wang Y, Shi J. Evaluation of microstructure, mechanical properties, and corrosion resistance for Ti-doped inconel 625 alloy produced by laser directed energy deposition. Mater Sci Eng A. 2023;884:145542. doi:10.1016/j.msea.2023.145542
  • Bayazid SM, Farhangi H, Asgharzadeh H, et al. Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing. 2016;649:293–300.
  • Romero-Reséndiz L, Amigó V, Escuder ÁV, et al. Effect of the microstructure generated by repetitive corrugation and straightening (RCS) process on the mechanical properties and stress corrosion cracking of Al-7075 alloy. Journal of Materials Research and Technology. 2021;15:4564–4572. doi:10.1016/j.jmrt.2021.10.043
  • Kusakin P, Terentev VF. Structure and mechanical properties of high-strength austenitic-martensitic trip-steel VNS9-Sh. Met Sci Heat Treat. 2019;61:10–14. doi:10.1007/s11041-019-00369-3
  • Bhagavatam A, Ramakrishnan A, Adapa V, et al. Laser metal deposition of aluminum 7075 alloy. International Journal of Material Science and Research. 2019;2(2):50–55. doi:10.18689/ijmsr-1000108
  • Reschetnik W, Brüggemann J, Aydinöz ME, et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy. Procedia Structural Integrity. 2016;2:3040–3048. doi:10.1016/j.prostr.2016.06.380
  • Li R, Wang M, Li Z, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater. 2020;193:83–98. doi:10.1016/j.actamat.2020.03.060
  • Ashokkumar M, Lee J, Iida Y, et al. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. Chemphyschem. 2010;11(8):1680–1684. doi:10.1002/cphc.200901037
  • Apfel RE. Acoustic cavitation prediction. J Acoust Soc Am 1978;64.:S1–S63. doi:10.1121/1.2004304
  • Ning F, Jiang D, Liu Z, et al. Ultrasonic frequency effects on the melt pool formation, porosity, and thermal-dependent property of inconel 718 fabricated by ultrasonic vibration-assisted directed energy deposition. J Manuf Sci Eng. 2021;143(5):051009. doi:10.1115/1.4048515
  • Yang Z, Zhu L, Wang S, et al. Effects of ultrasound on multilayer forming mechanism of inconel 718 in directed energy deposition. Additive Manufacturing. 2021;48:102462. doi:10.1016/j.addma.2021.102462
  • Dharmendra C, Hadadzadeh A, Amirkhiz BS, et al. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing. Additive Manufacturing. 2019;30:100872. doi:10.1016/j.addma.2019.100872
  • Wang B, Tan D, Lee TL, et al. Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound. Acta Mater. 2018;144:505–515. doi:10.1016/j.actamat.2017.10.067
  • Ramirez A, Qian M, Davis B, et al. Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys. Scr Mater. 2008;59(1):19–22. doi:10.1016/j.scriptamat.2008.02.017
  • Baek M, Euh K, Lee K. Microstructure, tensile and fatigue properties of high strength Al 7075 alloy manufactured via twin-roll strip casting. Journal of Materials Research and Technology. 2020;9(5):9941–9950. doi:10.1016/j.jmrt.2020.06.097
  • Hall EO. The deformation and ageing of mild steel: II characteristics of the L ders deformation. Proc Phys Soc London Sect B. 1951;64(9):742. doi:10.1088/0370-1301/64/9/302
  • Petch NJ. The orientation relationships between cementite and α-iron. Acta Crystallogr. 1953;6(1):96. doi:10.1107/S0365110X53000260
  • Hansen N. Hall–petch relation and boundary strengthening. Scr Mater. 2004;51(8):801–806. doi:10.1016/j.scriptamat.2004.06.002