1,877
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Fatigue performance of metal additive manufacturing: a comprehensive overview

ORCID Icon, , , &
Article: e2302556 | Received 03 Oct 2023, Accepted 01 Jan 2024, Published online: 21 Mar 2024

References

  • Solberg K, Berto F. What is going on with fatigue of additively manufactured metals? Mat Des Process Commun. 2019;1(5):84–87. doi:10.1002/mdp2.84
  • Werner T, Madia M, Zerbst U. Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L. Procedia Structural Integrity. 2022;38:554–563. doi:10.1016/j.prostr.2022.03.056
  • Sanaei N, Fatemi A. Defect-based fatigue life prediction of L-PBF additive manufactured metals. Eng Fract Mech. 2021;244:1–23. doi:10.1016/j.engfracmech.2021.107541
  • Minerva G, Awd M, Tenkamp J, et al. Machine learning-assisted extreme value statistics of anomalies in AlSi10Mg manufactured by L-PBF for robust fatigue strength predictions. Mater Des. 2023;235:1–14. doi:10.1016/j.matdes.2023.112392
  • Barricelli L, Patriarca L, du Plessis A, et al. Orientation-dependent fatigue assessment of Ti6Al4V manufactured by L-PBF: Size of surface features and shielding effect. Int J Fatigue. 2023;168:1–21. doi:10.1016/j.ijfatigue.2022.107401
  • Sausto F, Romano S, Patriarca L, et al. Benchmark of a probabilistic fatigue software based on machined and as-built components manufactured in AlSi10Mg by L-PBF. Int J Fatigue. 2022;165:1–17. doi:10.1016/j.ijfatigue.2022.107171
  • Solberg K, Berto F. A diagram for capturing and predicting failure locations in notch geometries produced by additive manufacturing. Int J Fatigue. 2020;134:1–6. doi:10.1016/j.ijfatigue.2019.105428
  • Solberg K, Berto F. Notch-defect interaction in additively manufactured Inconel 718. Int J Fatigue. 2019;122:35–45. doi:10.1016/j.ijfatigue.2018.12.021
  • Solberg K, Berto F. The effect of defects and notches in quasi-static and fatigue loading of Inconel 718 specimens produced by selective laser melting. Int J Fatigue. 2020;137:1–9. doi:10.1016/j.ijfatigue.2020.105637
  • Markham MJ, Fatemi A. Multiaxial fatigue life predictions of additively manufactured metals using a hybrid of linear elastic fracture mechanics and a critical plane approach. Int J Fatigue. 2024;178:1–8. doi:10.1016/j.ijfatigue.2023.107979
  • Foti P, Razavi N, Fatemi A, et al. Multiaxial fatigue of additively manufactured metallic components: A review of the failure mechanisms and fatigue life prediction methodologies. Prog Mater Sci. 2023;137:1–40. doi:10.1016/j.pmatsci.2023.101126
  • Sanaei N, Fatemi A. Defect-based multiaxial fatigue life prediction of L-PBF additive manufactured metals. Fat Fract Eng Mater Struct. 2021;44(7):1897–1915. doi:10.1111/ffe.13449
  • Maleki E, Bagherifard S, Unal O, et al. Superior effects of hybrid laser shock peening and ultrasonic nanocrystalline surface modification on fatigue behavior of additive manufactured AlSi10Mg. Surf Coat Technol. 2023;463:1–12. doi:10.1016/j.surfcoat.2023.129512
  • Baig S, et al. Tensile and fatigue behaviors of additively manufactured AlSi10Mg: Effect of solutionizing and aging heat treatments. Fat Fract Eng Mater Struct. 2023;46(7):2662–2680.
  • Ahmad N, Shao S, Seifi M, et al. Additively manufactured IN718 in thin wall and narrow flow channel geometries: effects of post-processing and wall thickness on tensile and fatigue behaviors. Additive Manufacturing. 2022;60:1–23. doi:10.1016/j.addma.2022.103264
  • Pegues JW, Roach MD, Shamsaei N. Influence of microstructure on fatigue crack nucleation and microstructurally short crack growth of an austenitic stainless steel. Mater Sci Eng A. 2017;707:657–667. doi:10.1016/j.msea.2017.09.081
  • Qian W, Wu S, Wu Z, et al. In situ X-ray imaging of fatigue crack growth from multiple defects in additively manufactured AlSi10Mg alloy. Int J Fatigue. 2022;155:1–13. doi:10.1016/j.ijfatigue.2021.106616
  • Bao J, Wu Z, Wu S, et al. Hot dwell-fatigue behaviour of additively manufactured AlSi10Mg alloy: Relaxation, cyclic softening and fracture mechanisms. Int J Fatigue. 2021;151:1–13. doi:10.1016/j.ijfatigue.2021.106408
  • Wu Z, Wu S, Bao J, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. Int J Fatigue. 2021;151:1–14. doi:10.1016/j.ijfatigue.2021.106317
  • Peng X, Wu S, Qian W, et al. The potency of defects on fatigue of additively manufactured metals. Int J Mech Sci. 2022;221:1–12. doi:10.1016/j.ijmecsci.2022.107185
  • Bao H, Wu S, Wu Z, et al. A machine-learning fatigue life prediction approach of additively manufactured metals. Eng Fract Mech. 2021;242:1–10. doi:10.1016/j.engfracmech.2020.107508
  • du Plessis A. X-ray computed tomography for additive manufacturing: improved non-destructive evaluation using deep learning. Trans Add Manuf Meets Med. 2023;5(S1):1144–1144.
  • Wang A, Wei Q, Tang Z, et al. Effects of processing parameters on pore defects in blue laser directed energy deposition of aluminum by in and ex situ observation. J Mater Process Technol. 2023;319:1–12. doi:10.1016/j.jmatprotec.2023.118068
  • Tshibalanganda M, et al. On the evaluation of surface roughness: X-ray tomography reveals hidden details. in ASTM International Conference on Additive Manufacturing. 2022. ASTM International.
  • Pan X, Du L, Qian G, et al. Microstructure features induced by fatigue crack initiation up to very-high-cycle regime for an additively manufactured aluminium alloy. J Mater Sci Technol. 2024;173:247–260. doi:10.1016/j.jmst.2023.07.023
  • Li J, Huang Q, Wang Z, et al. Microstructural insights into fatigue short crack propagation resistance and rate fluctuation in a Ni-based superalloy manufactured by Laser powder bed fusion. Int J Plast. 2023;171:1–15. doi:10.1016/j.ijplas.2023.103800
  • Sun J, Qian G, Li J, et al. A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy. J Mech Phys Solids. 2023;175:1–27. doi:10.1016/j.jmps.2023.105293
  • Tang W, Tang Z, Lu W, et al. Modeling and prediction of fatigue properties of additively manufactured metals. Acta Mech Solida Sin. 2023;36(2):181–213. doi:10.1007/s10338-023-00380-5
  • Awd M, Saeed L, Walther F. A review on the enhancement of failure mechanisms modeling in additively manufactured structures by machine learning. Eng Fail Anal. 2023;151:1–18. doi:10.1016/j.engfailanal.2023.107403
  • Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog Mater Sci. 2021;117:1–41. doi:10.1016/j.pmatsci.2020.100724
  • Zerbst U, Bruno G, Buffière J-Y, et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges. Prog Mater Sci. 2021;121:1–73. doi:10.1016/j.pmatsci.2021.100786
  • Ye C, Zhang C, Zhao J, et al. Effects of post-processing on the surface finish, porosity, residual stresses, and fatigue performance of additive manufactured metals: a review. J Mater Eng Perform. 2021;30:6407–6425. doi:10.1007/s11665-021-06021-7
  • Maleki E, Bagherifard S, Bandini M, et al. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Add Manuf. 2021;37:1–22. doi:10.1016/j.addma.2020.101619
  • Adomako NK, Haghdadi N, Primig S. Electron and laser-based additive manufacturing of Ni-based superalloys: a review of heterogeneities in microstructure and mechanical properties. Mater Des. 2022;223:1–42. doi:10.1016/j.matdes.2022.111245
  • Yadollahi A, Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int J Fatigue. 2017;98:14–31. doi:10.1016/j.ijfatigue.2017.01.001
  • Smudde CM, D'Elia CR, San Marchi CW, et al. The influence of residual stress on fatigue crack growth rates of additively manufactured Type 304L stainless steel. Int J Fatigue. 2022;162:1–9. doi:10.1016/j.ijfatigue.2022.106954
  • Wang L, Guo Q, Chen L, et al. In-situ experimental and high-fidelity modeling tools to advance understanding of metal additive manufacturing. Int J Mach Tools Manuf. 2023;193:1–45. doi:10.1016/j.ijmachtools.2023.104077
  • Poudel A, Yasin MS, Ye J, et al. Feature-based volumetric defect classification in metal additive manufacturing. Nat Commun. 2022;13(1):1–12. doi:10.1038/s41467-022-34122-x
  • Kakiuchi T, Kawaguchi R, Nakajima M, et al. Prediction of fatigue limit in additively manufactured Ti-6Al-4V alloy at elevated temperature. Int J Fatigue. 2019;126:55–61. doi:10.1016/j.ijfatigue.2019.04.025
  • Akgun E, Zhang X, Biswal R, et al. Fatigue of wire+arc additive manufactured Ti-6Al-4V in presence of process-induced porosity defects. Int J Fatigue. 2021;150:1–10. doi:10.1016/j.ijfatigue.2021.106315
  • Concli F, et al. High and low-cycle-fatigue properties of 17–4 PH manufactured via selective laser melting in as-built, machined and hipped conditions. Prog Add Manuf. 2021;7:1–11.
  • Greitemeier D, Dalle Donne C, Syassen F, et al. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V. Mater Sci Technol. 2016;32(7):629–634. doi:10.1179/1743284715Y.0000000053
  • Strano G, Hao L, Everson RM, et al. Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol. 2013;213(4):589–597. doi:10.1016/j.jmatprotec.2012.11.011
  • Elambasseril J, Rogers J, Wallbrink C, et al. Laser powder bed fusion additive manufacturing (LPBF-AM): the influence of design features and LPBF variables on surface topography and effect on fatigue properties. Crit Rev Solid State Mater Sci. 2023;48(1):132–168. doi:10.1080/10408436.2022.2041396
  • Du Plessis A, Beretta S. Killer notches: the effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Add Manuf. 2020;35:1–15. doi:10.1016/j.addma.2020.101424
  • Tullis R, Dunn A, Young D, et al. Additive manufacturing bulk parameter’s influence on surface roughness, microstructure, and fatigue. JOM. 2023;75(6):1975–1981. doi:10.1007/s11837-023-05779-6
  • Sanaei N, Fatemi A. Analysis of the effect of surface roughness on fatigue performance of powder bed fusion additive manufactured metals. Theor Appl Fract Mech. 2020;108:1–14. doi:10.1016/j.tafmec.2020.102638
  • Le V-D, Pessard E, Morel F, et al. Fatigue behaviour of additively manufactured Ti-6Al-4V alloy: the role of defects on scatter and statistical size effect. Int J Fatigue. 2020;140:1–16. doi:10.1016/j.ijfatigue.2020.105811
  • Molaei R, Fatemi A, Sanaei N, et al. Fatigue of additive manufactured Ti-6Al-4V, Part II: the relationship between microstructure, material cyclic properties, and component performance. Int J Fatigue. 2020;132:1–19. doi:10.1016/j.ijfatigue.2019.105363
  • Yadollahi A, Mahtabi MJ, Khalili A, et al. Fatigue life prediction of additively manufactured material: effects of surface roughness, defect size, and shape. Fat Fract Eng Mater Struct. 2018;41(7):1602–1614. doi:10.1111/ffe.12799
  • Yadollahi A, et al. Prediction of fatigue lives in additively manufactured alloys based on the crack-growth concept. in 2017 International Solid Freeform Fabrication Symposium. 2017. University of Texas at Austin.
  • Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater Sci Eng A. 2014;598:327–337. doi:10.1016/j.msea.2014.01.041
  • Stern F, Kleinhorst J, Tenkamp J, et al. Investigation of the anisotropic cyclic damage behavior of selective laser melted AISI 316L stainless steel. Fat Fract Eng Mater Struct. 2019;42(11):2422–2430. doi:10.1111/ffe.13029
  • Fatemi A, Molaei R, Sharifimehr S, et al. Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect. Int J Fatigue. 2017;100:347–366. doi:10.1016/j.ijfatigue.2017.03.044
  • Molaei R, Fatemi A, Phan N. Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects. Int J Fatigue. 2018;117:352–370. doi:10.1016/j.ijfatigue.2018.07.035
  • Rigon D, et al. Influence of defects on axial fatigue strength of maraging steel specimens produced by additive manufacturing. in MATEC web of conferences. 2018. EDP Sciences.
  • Li P, Warner DH, Pegues JW, et al. Towards predicting differences in fatigue performance of laser powder bed fused Ti-6Al-4V coupons from the same build. Int J Fatigue. 2019;126:284–296. doi:10.1016/j.ijfatigue.2019.05.004
  • Du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater Des. 2020;187:1–15. doi:10.1016/j.matdes.2019.108385
  • Vayssette B, Saintier N, Brugger C, et al. Surface roughness effect of SLM and EBM Ti-6Al-4V on multiaxial high cycle fatigue. Theor Appl Fract Mech. 2020;108:1–16. doi:10.1016/j.tafmec.2020.102581
  • Gockel J, Sheridan L, Koerper B, et al. The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int J Fatigue. 2019;124:380–388. doi:10.1016/j.ijfatigue.2019.03.025
  • Lee S, Rasoolian B, Silva DF, et al. Surface roughness parameter and modeling for fatigue behavior of additive manufactured parts: A non-destructive data-driven approach. Add Manuf. 2021;46:1–15. doi:10.1016/j.addma.2021.102094
  • Li L. Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping. J Mater Sci. 2006;41:7886–7893. doi:10.1007/s10853-006-0948-0
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58(9):3303–3312. doi:10.1016/j.actamat.2010.02.004
  • Wang F, Wu XH, Clark D. On direct laser deposited Hastelloy X: dimension, surface finish, microstructure and mechanical properties. Mater Sci Technol. 2011;27(1):344–356. doi:10.1179/026708309X12578491814591
  • Javidrad H, Salemi S. Effect of the volume energy density and heat treatment on the defect, microstructure, and hardness of L-PBF inconel 625. Metall Mater Trans A. 2020;51:5880–5891. doi:10.1007/s11661-020-05992-x
  • Sanaei N, Fatemi A, Phan N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater Des. 2019;182:1–22. doi:10.1016/j.matdes.2019.108091
  • Romano S, Nezhadfar PD, Shamsaei N, et al. High cycle fatigue behavior and life prediction for additively manufactured 17-4 PH stainless steel: effect of sub-surface porosity and surface roughness. Theor Appl Fract Mech. 2020;106:1–14. doi:10.1016/j.tafmec.2020.102477
  • Fleishel R, Ferrell W, TerMaath S. Fatigue-damage initiation at process introduced internal defects in electron-beam-melted Ti-6Al-4V. Metals (Basel). 2023;13(2):1–16. doi:10.3390/met13020350
  • Javidrad H, Javidrad F. Review of state-of-the-art research on the design and manufacturing of support structures for powder-bed fusion additive manufacturing. Prog Addit Manuf. 2023: 1–26.
  • Nezhadfar P, Thompson S, Saharan A, et al. Structural integrity of additively manufactured aluminum alloys: effects of build orientation on microstructure, porosity, and fatigue behavior. Addit Manuf. 2021;47:1–18. doi:10.1016/j.addma.2021.102292
  • Shrestha R, Simsiriwong J, Shamsaei N. Fatigue behavior of additive manufactured 316L stainless steel parts: effects of layer orientation and surface roughness. Addit Manuf. 2019;28:23–38. doi:10.1016/j.addma.2019.04.011
  • Doh J, Raju N, Raghavan N, et al. Bayesian inference-based decision of fatigue life model for metal additive manufacturing considering effects of build orientation and post-processing. Int J Fatigue. 2022;155:1–18. doi:10.1016/j.ijfatigue.2021.106535
  • Yadollahi A, Shamsaei N, Thompson SM, et al. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int J Fatigue. 2017;94:218–235. doi:10.1016/j.ijfatigue.2016.03.014
  • Zhang H, Xu M, Liu Z, et al. Microstructure, surface quality, residual stress, fatigue behavior and damage mechanisms of selective laser melted 304L stainless steel considering building direction. Addi Manuf. 2021;46:1–21. doi:10.1016/j.addma.2021.102147
  • Xu Z, Wang Q, Wang XS, et al. High cycle fatigue performance of AlSi10mg alloy produced by selective laser melting. Mech Mater. 2020;148:1–16. doi:10.1016/j.mechmat.2020.103499
  • Bača A, Konečná R, Nicoletto G, et al. Influence of build direction on the fatigue behaviour of Ti6Al4V alloy produced by direct metal laser sintering. Mater Today Proc. 2016;3(4):921–924. doi:10.1016/j.matpr.2016.03.021
  • Beretta S, Gargourimotlagh M, Foletti S, et al. Fatigue strength assessment of “as built” AlSi10Mg manufactured by SLM with different build orientations. Int J Fatigue. 2020;139:1–16. doi:10.1016/j.ijfatigue.2020.105737
  • Parvez MM, Pan T, Chen Y, et al. High cycle fatigue performance of LPBF 304L stainless steel at nominal and optimized parameters. Mater (Basel). 2020;13(7):1–15. doi:10.3390/ma13071591
  • Andreau O, Pessard E, Koutiri I, et al. A competition between the contour and hatching zones on the high cycle fatigue behaviour of a 316L stainless steel: analyzed using X-ray computed tomography. Mater Sci Eng A. 2019;757:146–159. doi:10.1016/j.msea.2019.04.101
  • Junet A, Messager A, Boulnat X, et al. Fabrication of artificial defects to study internal fatigue crack propagation in metals. Scr Mater. 2019;171:87–91. doi:10.1016/j.scriptamat.2019.05.018
  • Sanaei N, Fatemi A. Analysis of the effect of internal defects on fatigue performance of additive manufactured metals. Mater Sci Eng A. 2020;785:139385. doi:10.1016/j.msea.2020.139385
  • Du L, Pan X, Qian G, et al. Crack initiation mechanisms under two stress ratios up to very-high-cycle fatigue regime for a selective laser melted Ti-6Al-4V. Int J Fatigue. 2021;149:106294. doi:10.1016/j.ijfatigue.2021.106294
  • Solberg K, Guan S, Razavi N, et al. Fatigue of additively manufactured 316L stainless steel: the influence of porosity and surface roughness. Fat Fract Eng Mater Struct. 2019;42(9):2043–2052. doi:10.1111/ffe.13077
  • Syed AK, et al. Defects tolerance and fatigue limit prediction for laser powder bed fusion Ti6al4v. Available at SSRN 4598638.
  • Nasab MH, Romano S, Gastaldi D, et al. Combined effect of surface anomalies and volumetric defects on fatigue assessment of AlSi7Mg fabricated via laser powder bed fusion. Addit Manuf. 2020;34:1–14. doi:10.1016/j.addma.2019.100918
  • Le V-D, Pessard E, Morel F, et al. Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach. Eng Fract Mech. 2019;214:410–426. doi:10.1016/j.engfracmech.2019.03.048
  • Murakami Y, Takagi T, Wada K, et al. Essential structure of SN curve: prediction of fatigue life and fatigue limit of defective materials and nature of scatter. Int J Fatigue. 2021;146:1–14. doi:10.1016/j.ijfatigue.2020.106138
  • Li C, Wu S, Zhang J, et al. Determination of the fatigue P-S-N curves – a critical review and improved backward statistical inference method. Int J Fatigue. 2020;139:1–18. doi:10.1016/j.ijfatigue.2020.105789
  • Qu Z, Zhang ZJ, Zhu YK, et al. Coupling effects of microstructure and defects on the fatigue properties of laser powder bed fusion Ti-6Al-4V. Addit Manuf. 2023;61:1–15. doi:10.1016/j.addma.2022.103355
  • Li C, Liu ZY, Fang XY, et al. Residual stress in metal additive manufacturing. Procedia Cirp. 2018;71:348–353. doi:10.1016/j.procir.2018.05.039
  • Zhang Y, Wang J, Wu L, et al. Surface integrity and bending fatigue behavior of aeronautic gear steel under combined carburized treatment and shot peening. Int J Fatigue. 2023;169:1–11. doi:10.1016/j.ijfatigue.2022.107488
  • Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300–307. doi:10.1016/j.ijfatigue.2012.11.011
  • Lai W-J, et al. Effect of residual stress on fatigue strength of 316L stainless steel produced by laser powder bed fusion process. Prog Addit Manuf. 2021;6:375–383.
  • Zerbst U, Madia M, Bruno G, et al. Towards a methodology for component design of metallic am parts subjected to cyclic loading. Metals (Basel). 2021;11(5):1–17. doi:10.3390/met11050709
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi:10.1016/j.actamat.2016.07.019
  • Torries B, Imandoust A, Beretta S, et al. Overview on microstructure- and defect-sensitive fatigue modeling of additively manufactured materials. Jom. 2018;70:1853–1862. doi:10.1007/s11837-018-2987-9
  • Shamsaei N, Yadollahi A, Bian L, et al. An overview of direct laser deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control. Addit Manuf. 2015;8:12–35. doi:10.1016/j.addma.2015.07.002
  • Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int J Fatigue. 2017;94:236–245. doi:10.1016/j.ijfatigue.2016.05.018
  • Gao X, Tao C, Wu S. Anisotropic high cycle fatigue property estimation for laser additive manufactured Ti6Al4V alloy dependence on tomographic imaging of defect population. J Mater Res Techn. 2023;22:1971–1982. doi:10.1016/j.jmrt.2022.12.069
  • Beard W, Lancaster R, Barnard N, et al. The influence of surface finish and build orientation on the low cycle fatigue behaviour of laser powder bed fused stainless steel 316L. Mater Sci Eng A. 2023;864:1–17. doi:10.1016/j.msea.2023.144593
  • Liang X, Hor A, Robert C, et al. Effects of building direction and loading mode on the high cycle fatigue strength of the laser powder bed fusion 316L. Int J Fatigue. 2023;170:1–10. doi:10.1016/j.ijfatigue.2023.107506
  • Zhou Z, et al. Tensile, fatigue properties and their anisotropies of Al-Mg alloy fabricated by wire-arc additive manufacturing. 3D Print Addit Manuf. 2023.
  • Ghorbanpour S, Sahu S, Deshmukh K, et al. Effect of microstructure induced anisotropy on fatigue behaviour of functionally graded Inconel 718 fabricated by additive manufacturing. Mater Charact. 2021;179:1–18. doi:10.1016/j.matchar.2021.111350
  • Yu C, Zhang P, Zhang Z, et al. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel. J Mater Sci Technol. 2020;46:191–200. doi:10.1016/j.jmst.2019.08.047
  • Pham M-S, Dovgyy B, Hooper PA, et al. The role of side-branching in microstructure development in laser powder-bed fusion. Nat Commun. 2020;11(1):1–12. doi:10.1038/s41467-020-14453-3
  • Ma M, Wang Z, Zeng X. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater Sci Eng A. 2017;685:265–273. doi:10.1016/j.msea.2016.12.112
  • Cui L, Jiang F, Peng RL, et al. Dependence of microstructures on fatigue performance of polycrystals: A comparative study of conventional and additively manufactured 316L stainless steel. Int J Plast. 2022;149:1–15. doi:10.1016/j.ijplas.2021.103172
  • Nicoletto G. Anisotropic high cycle fatigue behavior of Ti–6Al–4V obtained by powder bed laser fusion. Int J Fatigue. 2017;94:255–262. doi:10.1016/j.ijfatigue.2016.04.032
  • Zhang Y, Zhang H, Xue J, et al. Microstructure transformed by heat treatment to improve fatigue property of laser solid formed Ti6Al4V titanium alloy. Mater Sci Eng A. 2023;865:1–9. doi:10.1016/j.msea.2022.144363
  • Liu F, Chen Y, Li L, et al. Interior defect-induced crack initiation mechanism and initial growth behavior for Ti6Al4V alloy fabricated using laser powder bed fusion. J Mater Res Techn. 2022;21:2089–2104. doi:10.1016/j.jmrt.2022.10.043
  • Sun C, Chi W, Wang W, et al. Characteristic and mechanism of crack initiation and early growth of an additively manufactured Ti-6Al-4V in very high cycle fatigue regime. Int J Mech Sci. 2021;205:1–8. doi:10.1016/j.ijmecsci.2021.106591
  • Cheng G, Li H, Dai H, et al. Investigation of high-cycle fatigue properties of wire arc additive manufacturing 13Cr4Ni martensitic stainless steel. Metals (Basel). 2023;13(7):1–16. doi:10.3390/met13071210
  • Zhang K, Liu Y, Tian X, et al. Fatigue behaviour of L-DED processed Ti-6Al-4V with microstructures refined by trace boron addition. Int J Fatigue. 2023;168:1–13. doi:10.1016/j.ijfatigue.2022.107454
  • Razavi SMJ, Berto F. Directed energy deposition versus wrought Ti-6Al-4V: a comparison of microstructure, fatigue behavior, and notch sensitivity. Adv Eng Mater. 2019;21(8):1–15. doi:10.1002/adem.201900220
  • Spierings AB, Starr TL, Wegener K. Fatigue performance of additive manufactured metallic parts. Rapid Prototyp J. 2013;19:88–94.
  • Nakatani M, Masuo H, Tanaka Y, et al. Effect of surface roughness on fatigue strength of Ti-6Al-4V alloy manufactured by additive manufacturing. Proc Struct Int. 2019;19:294–301. doi:10.1016/j.prostr.2019.12.032
  • Lesseur J, Tranchand B, Mancier T, et al. On the use of X-ray microtomography to control artificial defect geometries produced by metal additive manufacturing. Nondestruct Test Eval. 2022;37(5):611–630. doi:10.1080/10589759.2022.2085701
  • Solberg, K. Fatigue design for metallic components produced by additive manufacturing. Trondheim: Norwegian University of Science and Technology; 2021. p. 173.
  • Konečná R, Nicoletto G, Fintová S, et al. As-built surface layer characterization and fatigue behavior of DMLS Ti6Al4V. Procedia Structural Integrity. 2017;7:92–100. doi:10.1016/j.prostr.2017.11.065
  • Bagehorn S, Wehr J, Maier H. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int J Fatigue. 2017;102:135–142. doi:10.1016/j.ijfatigue.2017.05.008
  • Yu C, et al. Effects of sandblasting and HIP on very high cycle fatigue performance of SLM-fabricated IN718 superalloy. J Mater Res Techn. 2022;18:29–43.
  • Uzan NE, Ramati S, Shneck R, et al. On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). Additive Manufacturing. 2018;21:458–464. doi:10.1016/j.addma.2018.03.030
  • Balbaa M, Ghasemi A, Fereiduni E, et al. Improvement of fatigue performance of laser powder bed fusion fabricated IN625 and IN718 superalloys via shot peening. J Mater Process Technol. 2022;304:1–12. doi:10.1016/j.jmatprotec.2022.117571
  • Jin X, Lan L, Gao S, et al. Effects of laser shock peening on microstructure and fatigue behavior of Ti–6Al–4V alloy fabricated via electron beam melting. Mater Sci Eng A. 2020;780:1–9. doi:10.1016/j.msea.2020.139199
  • Soyama H, Okura Y. The use of various peening methods to improve the fatigue strength of titanium alloy Ti6Al4V manufactured by electron beam melting. AIMS Mater Sci. 2018;5(5):1000–1015. doi:10.3934/matersci.2018.5.1000
  • Zhang H, Chiang R, Qin H, et al. The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64. Int J Fatigue. 2017;103:136–146. doi:10.1016/j.ijfatigue.2017.05.019
  • Karimbaev RM, Cho IS, Pyun YS, et al. Effect of ultrasonic nanocrystal surface modification treatment at room and high temperatures on the high-frequency fatigue behavior of Inconel 718 fabricated by laser metal deposition. Metals (Basel). 2022;12(3):1–15. doi:10.3390/met12030515
  • Persenot T, Buffiere J-Y, Maire E, et al. Fatigue properties of EBM as-built and chemically etched thin parts. Procedia Structural Integrity. 2017;7:158–165. doi:10.1016/j.prostr.2017.11.073
  • Bezuidenhout M, Ter Haar G, Becker T, et al. The effect of HF-HNO3 chemical polishing on the surface roughness and fatigue life of laser powder bed fusion produced Ti6Al4V. Mater Tod Commun. 2020;25:1–10. doi:10.1016/j.mtcomm.2020.101396
  • Benedetti M, Torresani E, Leoni M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater. 2017;71:295–306. doi:10.1016/j.jmbbm.2017.03.024
  • Kahlin M, Ansell H, Basu D, et al. Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. Int J Fatigue. 2020;134:1–12. doi:10.1016/j.ijfatigue.2020.105497
  • Solberg K, Wan D, Berto F. Fatigue assessment of as-built and heat-treated Inconel 718 specimens produced by additive manufacturing including notch effects. Fatig Fract Eng Mater Struct. 2020;43(10):2326–2336. doi:10.1111/ffe.13300
  • Ren Y, Lin X, Guo PF, et al. Low cycle fatigue properties of Ti-6Al-4V alloy fabricated by high-power laser directed energy deposition: experimental and prediction. Int J Fatigue. 2019;127:58–73. doi:10.1016/j.ijfatigue.2019.05.035
  • Balachandramurthi AR, Moverare J, Mahade S, et al. Additive manufacturing of alloy 718 via electron beam melting: Effect of post-treatment on the microstructure and the mechanical properties. Materials (Basel). 2018;12(1):1–21. doi:10.3390/ma12010068
  • Leuders S, Lieneke T, Lammers S, et al. On the fatigue properties of metals manufactured by selective laser melting – the role of ductility. J Mater Res. 2014;29(17):1911–1919. doi:10.1557/jmr.2014.157
  • Cutolo A, et al. Effect of heat treatments on fatigue properties of Ti–6Al–4 V and 316L produced by laser powder bed fusion in as-built surface condition. in TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. 2019. Springer.
  • Zhang C, Zhu H, Liao H, et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int J Fatigue. 2018;116:513–522. doi:10.1016/j.ijfatigue.2018.07.016
  • Schneller W, Leitner M, Springer S, et al. Effect of HIP treatment on microstructure and fatigue strength of selectively laser melted AlSi10Mg. J Manuf Mater Proces. 2019;3(1):3–9. doi:10.3390/jmmp3010016
  • Aydinöz M, Brenne F, Schaper M, et al. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater Sci Eng A. 2016;669:246–258. doi:10.1016/j.msea.2016.05.089
  • Masuo H, Tanaka Y, Morokoshi S, et al. Effects of defects, surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing. Proc Struct Int. 2017;7:19–26. doi:10.1016/j.prostr.2017.11.055
  • Gheysen J, Tingaud D, Villanova J, et al. Exceptional fatigue life and ductility of new liquid healing hot isostatic pressing especially tailored for additive manufactured aluminum alloys. Scr Mater. 2023;233:1–15. doi:10.1016/j.scriptamat.2023.115512
  • Qin Z, Kang N, Zong H, et al. Improved fatigue properties of laser powder bed fusion of Al–4.74Mg–0.70Sc–0.32Zr alloy via hot isostatic pressing. Materials Research Letters. 2022;10(11):720–727. doi:10.1080/21663831.2022.2088252
  • Zhang J, Fatemi A. Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling. Theor Appl Fract Mech. 2019;103:1–11. doi:10.1016/j.tafmec.2019.102260
  • Bai Y, Zhao C, Yang J, et al. Dry mechanical-electrochemical polishing of selective laser melted 316L stainless steel. Mater Des. 2020;193:1–16. doi:10.1016/j.matdes.2020.108840
  • Karakurt I, Ho KY, Ledford C, et al. Development of a magnetically driven abrasive polishing process for additively manufactured copper structures. Proc Manuf. 2018;26:798–805. doi:10.1016/j.promfg.2018.07.097
  • Nagalingam AP, et al. Effect of internal surface finishing using hydrodynamic cavitation abrasive finishing (HCAF) process on the mechanical properties of additively manufactured components. in Laser Metrology and Machine Performance XIII-13th International Conference and Exhibition on Laser Metrology, Machine Tool, CMM and Robotic Performance, LAMDAMAP. 2019.
  • Tan KL, Yeo S. Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion. Addit Manuf. 2020;31:1–12. doi:10.1016/j.addma.2019.100938
  • Worts N, Jones J, Squier J. Surface structure modification of additively manufactured titanium components via femtosecond laser micromachining. Opt Commun. 2019;430:352–357. doi:10.1016/j.optcom.2018.08.055
  • Basha MM, Basha SM, Jain VK, et al. State of the art on chemical and electrochemical based finishing processes for additive manufactured features. Addit Manuf. 2022;58:1–28. doi:10.1016/j.addma.2022.103028
  • Scherillo F. Chemical surface finishing of AlSi10Mg components made by additive manufacturing. Manuf Lett. 2019;19:5–9. doi:10.1016/j.mfglet.2018.12.002
  • Chaghazardi Z, Wüthrich R. Review—electropolishing of additive manufactured metal parts. J Electrochem Soc. 2022;169(4):1–19. doi:10.1149/1945-7111/ac6450
  • Yu Z, Zheng Y, Chen J, et al. Effect of laser remelting processing on microstructure and mechanical properties of 17-4 PH stainless steel during laser direct metal deposition. J Mater Process Technol. 2020;284:1–13. doi:10.1016/j.jmatprotec.2020.116738
  • Sajadi F, Tiemann J-M, Bandari N, et al. Fatigue improvement of AlSi10Mg fabricated by laser-based powder bed fusion through heat treatment. Metals (Basel). 2021;11(5):1–17. doi:10.3390/met11050683
  • Han Q, Mertens R, Montero-Sistiaga ML, et al. Laser powder bed fusion of Hastelloy X: effects of hot isostatic pressing and the hot cracking mechanism. Mater Sci Eng A. 2018;732:228–239. doi:10.1016/j.msea.2018.07.008
  • Brandão P, Infante V, Deus A. Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine. Proc Struct Int. 2016;1:189–196. doi:10.1016/j.prostr.2016.02.026
  • Edwards P, O'conner A, Ramulu M. Electron beam additive manufacturing of titanium components: properties and performance. J Manuf Sci Eng. 2013;135(6):1–7.
  • Edwards P, Ramulu M. Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4 V. Fat Fract Eng Mater Struct. 2015;38(10):1228–1236. doi:10.1111/ffe.12303
  • Riemer A, Richard HA. Crack propagation in additive manufactured materials and structures. Proc Struct Int. 2016;2:1229–1236. doi:10.1016/j.prostr.2016.06.157
  • Zhang H, Dong D, Su S, et al. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V. Chin J Aeronaut. 2019;32(10):2383–2393. doi:10.1016/j.cja.2018.12.007
  • Yang Y, Zhao M, Wang H, et al. Microstructure and fatigue performance of Ti6Al4V produced by laser powder bed fusion after post-heat treatment. Appl Sci. 2023;13(3):1–17. doi:10.3390/app13031828
  • Molaei R, Fatemi A. Crack paths in additive manufactured metallic materials subjected to multiaxial cyclic loads including surface roughness, HIP, and notch effects. Int J Fatigue. 2019;124:558–570. doi:10.1016/j.ijfatigue.2019.03.007
  • VanSickle R, Foehring D, Chew HB, et al. Microstructure effects on fatigue crack growth in additively manufactured Ti–6Al–4V. Mater Sci Eng A. 2020;795:1–13. doi:10.1016/j.msea.2020.139993
  • Smith TR, Sugar JD, Schoenung JM, et al. Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel. Mater Sci Eng A. 2019;765:1–7. doi:10.1016/j.msea.2019.138268
  • Romano S, Brückner-Foit A, Brandão A, et al. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Eng Fract Mech. 2018;187:165–189. doi:10.1016/j.engfracmech.2017.11.002
  • Andreau O, Pessard E, Koutiri I, et al. Influence of the position and size of various deterministic defects on the high cycle fatigue resistance of a 316L steel manufactured by laser powder bed fusion. Int J Fatigue. 2021;143:1–14. doi:10.1016/j.ijfatigue.2020.105930
  • Poulin J-R, Kreitcberg A, Brailovski V. Effect of hot isostatic pressing of laser powder bed fused Inconel 625 with purposely induced defects on the residual porosity and fatigue crack propagation behavior. Additive Manufacturing. 2021;47:1–14. doi:10.1016/j.addma.2021.102324
  • Syed AK, Ahmad B, Guo H, et al. An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V. Mater Sci Eng A. 2019;755:246–257. doi:10.1016/j.msea.2019.04.023
  • Santos L, Borrego LP, Ferreira JAM, et al. Effect of heat treatment on the fatigue crack growth behaviour in additive manufactured AISI 18Ni300 steel. Theor Appl Fract Mech. 2019;102:10–15. doi:10.1016/j.tafmec.2019.04.005
  • Nezhadfar P, Burford E, Anderson-Wedge K, et al. Fatigue crack growth behavior of additively manufactured 17-4 PH stainless steel: Effects of build orientation and microstructure. Int J Fatigue. 2019;123:168–179. doi:10.1016/j.ijfatigue.2019.02.015
  • Xu Z, Liu A, Wang X. The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting. Mater Sci Eng A. 2019;767:1–12. doi:10.1016/j.msea.2019.138409
  • Hasib MT, Ostergaard HE, Li X, et al. Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation. Int J Fatigue. 2021;142:1–13. doi:10.1016/j.ijfatigue.2020.105955
  • Siddique S, Imran M, Walther F. Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy. Int J Fatigue. 2017;94:246–254. doi:10.1016/j.ijfatigue.2016.06.003
  • Riemer A, Leuders S, Thöne M, et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng Fract Mech. 2014;120:15–25. doi:10.1016/j.engfracmech.2014.03.008
  • Hu X, Xue Z, Ren T, et al. On the fatigue crack growth behaviour of selective laser melting fabricated Inconel 625: effects of build orientation and stress ratio. Fat Fract Eng Mater Struct. 2020;43(4):771–787. doi:10.1111/ffe.13181
  • Galarraga H, Warren RJ, Lados DA, et al. Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti-6Al-4V ELI manufactured by electron beam melting (EBM). Eng Fract Mech. 2017;176:263–280. doi:10.1016/j.engfracmech.2017.03.024
  • Sun W, Ai X, Li J. Effects of the building direction on fatigue crack growth behavior of Ti-6Al-4V manufactured by selective laser melting. Proc Struct Int. 2018;13:1020–1025. doi:10.1016/j.prostr.2018.12.190
  • Kestler H, Clemens H. Production, processing and application of γ (TiAl)-based alloys. Titanium and titanium alloys: fundamentals and applications, 2003: p. 351-392.
  • Welsch G, Boyer R, Collings E. Materials properties handbook: titanium alloys. Ohio: ASM international; 1993; p. 573–575.
  • Konečná R, Kunz L, Nicoletto G, et al. Long fatigue crack growth in Inconel 718 produced by selective laser melting. Int J Fatigue. 2016;92:499–506. doi:10.1016/j.ijfatigue.2016.03.012
  • Seifi M, Salem A, Satko D, et al. Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V. Int J Fatigue. 2017;94:263–287. doi:10.1016/j.ijfatigue.2016.06.001
  • Kalita B, Jayaganthan R. XFEM analysis of strain rate dependent mechanical properties of additively manufactured 17-4 precipitation hardening stainless steel. J Eng Mater Technol. 2023;145(3):1–11. doi:10.1115/1.4056729
  • Jones R, Michopoulos JG, Iliopoulos AP, et al. Representing crack growth in additively manufactured Ti-6Al-4V. Int J Fatigue. 2018;116:610–622. doi:10.1016/j.ijfatigue.2018.07.019
  • Iliopoulos A, Jones R, Michopoulos J, et al. Crack growth in a range of additively manufactured aerospace structural materials. Aerospace. 2018;5(4):1–19. doi:10.3390/aerospace5040118
  • Macallister N, Vanmeensel K, Becker TH. Fatigue crack growth parameters of laser powder bed fusion produced Ti-6Al-4V. Int J Fatigue. 2021;145:1–12. doi:10.1016/j.ijfatigue.2020.106100
  • Hu Y, Wu SC, Withers PJ, et al. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures. Mater Des. 2020;192:1–10. doi:10.1016/j.matdes.2020.108708
  • Berrios DR, Franco R, Rumiche F. Calibration of NASGRO equation for mixed-mode loading using experimental and numerical data. Revista Facultad de Ingeniería Universidad de Antioquia. 2020;97:65–77.
  • Gupta A, Sun W, Bennett C. Simulation of fatigue small crack growth in additive manufactured Ti–6Al–4V material. Continuum Mech Thermodyn. 2020;32:1745–1761. doi:10.1007/s00161-020-00878-0
  • Ferreira FF, Neto DM, Jesus JS, et al. Numerical prediction of the fatigue crack growth rate in SLM Ti-6Al-4V based on crack tip plastic strain. Metals (Basel). 2020;10(9):1–22. doi:10.3390/met10091133
  • Murakami Y, Beretta S. Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes (Boston). 1999;2:123–147. doi:10.1023/A:1009976418553
  • Murakami Y. Metal fatigue: effects of small defects and nonmetallic inclusions. Oxford: Academic Press, p. 61–91; 2019.
  • Sergejev F, Kubarsepp J, Preis I. Application of the Murakami approach for prediction of surface fatigue of cemented carbides. in Proceedings of the Korean Powder Metallurgy Institute Conference. 2006. The Korean Powder Metallurgy Institute.
  • Sergejev F, et al. Murakami approach: fatigue strength prediction of cemented carbides by considering pores to be equivalent to small defects. in Proceedings of European Congress and Exhibition on Powder Metallurgy, Prague, Czech Republic. 2005.
  • Yamashita Y, Murakami T, Mihara R, et al. Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by additive manufacturing. Proc Struct Int. 2017;7:11–18. doi:10.1016/j.prostr.2017.11.054
  • Maierhofer J, Pippan R, Gänser H-P. Modified NASGRO equation for physically short cracks. Int J Fatigue. 2014;59:200–207. doi:10.1016/j.ijfatigue.2013.08.019
  • Sheridan L, Scott-Emuakpor OE, George T, et al. Relating porosity to fatigue failure in additively manufactured alloy 718. Mater Sci Eng A. 2018;727:170–176. doi:10.1016/j.msea.2018.04.075
  • Leuders S, Vollmer M, Brenne F, et al. Fatigue strength prediction for titanium alloy TiAl6V4 manufactured by selective laser melting. Metall Mater Trans A. 2015;46:3816–3823. doi:10.1007/s11661-015-2864-x
  • Ogawahara M, Sasaki S. Relationship between internal defect size and fatigue limit in selective laser melted Inconel 718. Mech Eng J. 2021;8(1):20-00362–20-00362. doi:10.1299/mej.20-00362
  • Rigon D, Meneghetti G. An engineering estimation of fatigue thresholds from a microstructural size and Vickers hardness: application to wrought and additively manufactured metals. Int J Fatigue. 2020;139:1–13. doi:10.1016/j.ijfatigue.2020.105796
  • Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int J Fatigue. 2017;94:178–191. doi:10.1016/j.ijfatigue.2016.06.020
  • Yin H, Li P. Micropore-propagation-based model of fatigue life analysis of SLM manufactured Ti-6Al-4V. Int J Fatigue. 2023;167:1–8. doi:10.1016/j.ijfatigue.2022.107352
  • Muhammad M, Carrion PE, Shamsaei N. Fatigue life prediction of additive manufactured materials using a defect sensitive model. in 2019 International Solid Freeform Fabrication Symposium. 2019. University of Texas at Austin.
  • Dastgerdi JN, Jaberi O, Remes H. Influence of internal and surface defects on the fatigue performance of additively manufactured stainless steel 316L. Int J Fatigue. 2022;163:1–17. doi:10.1016/j.ijfatigue.2022.107025
  • Afazov S, et al. Defect-based fatigue model for additive manufacturing. Progr Addit Manuf. 2022:8: 1–8.
  • Chan KS, Peralta-Duran A. A methodology for predicting surface crack nucleation in additively manufactured metallic components. Metall Mater Trans A. 2019;50:4378–4387. doi:10.1007/s11661-019-05309-7
  • El Haddad M, Smith K, Topper T. Fatigue crack propagation of short cracks. 1979;101(1):42–46.
  • Concli F, Gerosa R, Panzeri D, et al. High and low cycle fatigue properties of selective laser melted AISI 316L and AlSi10Mg. Int J Fatigue. 2023;177:1–19. doi:10.1016/j.ijfatigue.2023.107931
  • Sadananda K, Sarkar S. Modified Kitagawa diagram and transition from crack nucleation to crack propagation. Metall Mater Trans A. 2013;44:1175–1189. doi:10.1007/s11661-012-1416-x
  • Sheridan L. A modified El-Haddad model for versatile defect tolerant design. Int J Fatigue. 2021;145:1–9. doi:10.1016/j.ijfatigue.2020.106062
  • Yang K, Huang Q, Wang Q, et al. Competing crack initiation behaviors of a laser additively manufactured nickel-based superalloy in high and very high cycle fatigue regimes. Int J Fatigue. 2020;136:1–12. doi:10.1016/j.ijfatigue.2020.105580
  • Caton M, Jones JW, Boileau JM, et al. The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy. Metall Mater Trans A. 1999;30:3055–3068. doi:10.1007/s11661-999-0216-4
  • Meneghetti G, Rigon D, Gennari C. An analysis of defects influence on axial fatigue strength of maraging steel specimens produced by additive manufacturing. Int J Fatigue. 2019;118:54–64. doi:10.1016/j.ijfatigue.2018.08.034
  • Wycisk E, Solbach A, Siddique S, et al. Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties. Phys Procedia. 2014;56:371–378. doi:10.1016/j.phpro.2014.08.120
  • Sheridan L, Gockel JE, Scott-Emuakpor OE. Stress-defect-life interactions of fatigued additively manufactured alloy 718. Int J Fatigue. 2021;143:1–11. doi:10.1016/j.ijfatigue.2020.106033
  • Niu X, Zhu S-P, He J-C, et al. Defect tolerant fatigue assessment of AM materials: Size effect and probabilistic prospects. Int J Fatigue. 2022;160:1–16. doi:10.1016/j.ijfatigue.2022.106884
  • Moquin E, Letenneur M, Kreitcberg A, et al. High cycle fatigue resistance of laser powder bed fused Ti–6Al–4V alloys with processing-induced porosity: Towards damage-tolerant design of printed components. Mater Sci Eng A. 2023;884:1–22. doi:10.1016/j.msea.2023.145509
  • Pessard E, Lavialle M, Laheurte P, et al. High-cycle fatigue behavior of a laser powder bed fusion additive manufactured Ti-6Al-4V titanium: Effect of pores and tested volume size. Int J Fatigue. 2021;149:1–12. doi:10.1016/j.ijfatigue.2021.106206
  • Schimbäck D, Kaserer L, Mair P, et al. Deformation and fatigue behaviour of additively manufactured Scalmalloy® with bimodal microstructure. Int J Fatigue. 2023;172:1–14. doi:10.1016/j.ijfatigue.2023.107592
  • Scott-Emuakpor O, et al. Establishing an acceptance criteria for assessing fatigue of additive repair processes. J Eng Gas Turbines Power. 2021;143(12):1–7.
  • Cersullo N, Mardaras J, Emile P, et al. Effect of internal defects on the fatigue behavior of additive manufactured metal components: a comparison between Ti6Al4V and Inconel 718. Mater (Basel). 2022;15(19):1–18. doi:10.3390/ma15196882
  • Nur MI, Soni M, Awd M, et al. Comparison of various intrinsic defect criteria to Plot Kitagawa–Takahashi diagrams in additively manufactured AlSi10Mg. Mater (Basel). 2023;16(18):1–22. doi:10.3390/ma16186334
  • Tenkamp J, Awd M, Siddique S, et al. Fracture–mechanical assessment of the effect of defects on the fatigue lifetime and limit in cast and additively manufactured aluminum–silicon alloys from HCF to VHCF regime. Metals (Basel). 2020;10(7):1–18. doi:10.3390/met10070943
  • Wu X, Kanz P, Mahmoud H, et al. Characterization of the microstructure and surface roughness effects on fatigue life using the Tanaka–Mura–Wu model. Appl Sci. 2021;11(21):1–13. doi:10.3390/app11219955
  • Haridas RS, Thapliyal S, Agrawal P, et al. Defect-based probabilistic fatigue life estimation model for an additively manufactured aluminum alloy. Mater Sci Eng A. 2020;798:1–16. doi:10.1016/j.msea.2020.140082
  • Tognan A, Salvati E. Probabilistic defect-based modelling of fatigue strength for incomplete datasets assisted by literature data. Int J Fatigue. 2023;173:1–16. doi:10.1016/j.ijfatigue.2023.107665
  • Riahi M, Javidrad H. Production of ultrasonic test piece by utilization of additive manufacturing technique. Russ J Nondestr Test. 2020;56:843–852. doi:10.1134/S106183092010006X
  • Bonneric M, Brugger C, Saintier N, et al. Contribution of the introduction of artificial defects by additive manufacturing to the determination of the Kitagawa diagram of Al-Si alloys. Pro Struct Int. 2022;38:141–148. doi:10.1016/j.prostr.2022.03.015
  • Benedetti M, Santus C. Building the Kitagawa-Takahashi diagram of flawed materials and components using an optimized V-notched cylindrical specimen. Eng Fract Mech. 2020;224:1–10. doi:10.1016/j.engfracmech.2019.106810
  • Stern F, Grabowski J, Elspaß A, et al. Influence assessment of artificial defects on the fatigue behavior of additively manufactured stainless steel 316LVM. Proc Struct Int. 2022;37:153–158. doi:10.1016/j.prostr.2022.01.071
  • Morishita K, Yamaguchi T, Wada K, et al. Technique for introducing internal defects with arbitrary sizes and locations in metals via additive manufacturing and evaluation of fatigue properties. Int J Auto Technol. 2023;17(4):378–387. doi:10.20965/ijat.2023.p0378
  • Amsterdam E, Kool G. High cycle fatigue of laser beam deposited Ti-6Al-4V and Inconel 718. in ICAF 2009, Bridging the Gap between Theory and Operational Practice: Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue, Rotterdam, The Netherlands, 27–29 May 2009. 2009. Springer.
  • Kousoulas P, Guo Y. On the probabilistic prediction for extreme geometrical defects induced by laser-based powder bed fusion. CIRP J Manuf Sci Technol. 2023;41:124–134. doi:10.1016/j.cirpj.2022.11.024
  • Sandell V. Defects in E-PBF Ti-6Al-4V and their effect on fatigue behaviour: Characteristics, distribution and impact on life. 2020, Luleå tekniska universitet.
  • Bhandari L, Gaur V. On study of process induced defects-based fatigue performance of additively manufactured Ti6Al4V alloy. Addit Manuf. 2022;60:1–14. doi:10.1016/j.addma.2022.103227
  • Romano S, Brandão A, Gumpinger J, et al. Qualification of AM parts: extreme value statistics applied to tomographic measurements. Mater Des. 2017;131:32–48. doi:10.1016/j.matdes.2017.05.091
  • Romano S, Abel A, Gumpinger J, et al. Quality control of AlSi10Mg produced by SLM: metallography versus CT scans for critical defect size assessment. Addit Manuf. 2019;28:394–405. doi:10.1016/j.addma.2019.05.017
  • Romano S, Miccoli S, Beretta S. A new FE post-processor for probabilistic fatigue assessment in the presence of defects and its application to AM parts. Int J Fatigue. 2019;125:324–341. doi:10.1016/j.ijfatigue.2019.04.008
  • Stopka KS, Yaghoobi M, Allison JE, et al. Simulated effects of sample size and grain neighborhood on the modeling of extreme value fatigue response. Acta Mater. 2022;224:1–18. doi:10.1016/j.actamat.2021.117524
  • Niu X, Zhu S-P, He J-C, et al. Probabilistic and defect tolerant fatigue assessment of AM materials under size effect. Eng Fract Mech. 2023;277:1–15. doi:10.1016/j.engfracmech.2022.109000
  • Deng K, Wei H, Liu W, et al. Probabilistic-based random maximum defect estimation and defect-related fatigue life prediction for laser direct deposited 316L parts. J Mater Process Technol. 2022;299:1–12. doi:10.1016/j.jmatprotec.2021.117389
  • Siddique S, Awd M, Tenkamp J, et al. Development of a stochastic approach for fatigue life prediction of AlSi12 alloy processed by selective laser melting. Eng Fail Anal. 2017;79:34–50. doi:10.1016/j.engfailanal.2017.03.015
  • Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des. 2016;105:160–170. doi:10.1016/j.matdes.2016.05.070
  • du Plessis A. Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography. Addit Manuf. 2019;30:1–9. doi:10.1016/j.addma.2019.100871
  • Leuders S, Vollmer M, Brenne F, et al. Fatigue strength prediction for titanium alloy TiAl6V4 manufactured by selective laser melting. Metall Mater Trans A. 2015;46(9):3816–3823. doi:10.1007/s11661-015-2864-x
  • Vayssette B, Saintier N, Brugger C, et al. Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing. Int J Fatigue. 2019;123:180–195. doi:10.1016/j.ijfatigue.2019.02.014
  • Senck S, Happl M, Reiter M, et al. Additive manufacturing and non-destructive testing of topology-optimised aluminium components. Nondestruct Test Eval. 2020;35(3):315–327. doi:10.1080/10589759.2020.1774582
  • Wu Z, He Z, Wu S, et al. Rotating bending fatigue mechanisms of L-PBF manufactured Ti-6Al-4V alloys using in situ X-ray tomography. Int J Fatigue. 2023;176:1–13. doi:10.1016/j.ijfatigue.2023.107876
  • Wu S, Xiao T, Withers P. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography. Eng Fract Mech. 2017;182:127–156. doi:10.1016/j.engfracmech.2017.07.027
  • McDowell D, Gall K, Horstemeyer MF, et al. Microstructure-based fatigue modeling of cast A356-T6 alloy. Eng Fract Mech. 2003;70(1):49–80. doi:10.1016/S0013-7944(02)00021-8
  • McDowell DL. Simulation-based strategies for microstructure-sensitive fatigue modeling. Mater Sci Eng A. 2007;468-470:4–14. doi:10.1016/j.msea.2006.08.129
  • Xue Y, HORSTEMEYER M, MCDOWELL D, et al. Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy. Int J Fatigue. 2007;29(4):666–676. doi:10.1016/j.ijfatigue.2006.07.005
  • Zhu L, Wu ZR, Hu XT, et al. Investigation of small fatigue crack initiation and growth behaviour of nickel base superalloy GH4169. Fat Frac Eng Mater Struct. 2016;39(9):1150–1160. doi:10.1111/ffe.12430
  • Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fat Fract Eng Mater Struct. 1988;11(3):149–165. doi:10.1111/j.1460-2695.1988.tb01169.x
  • Van Do VN, Lee C-H, Chang K-H. High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model. Int J Fatigue. 2015;70:51–62. doi:10.1016/j.ijfatigue.2014.08.013
  • Desmorat R, Cantournet S. Modeling microdefects closure effect with isotropic/anisotropic damage. Int J Damage Mech. 2008;17(1):65–96. doi:10.1177/1056789507069541
  • Aïd A, Amrouche A, Bouiadjra BB, et al. Fatigue life prediction under variable loading based on a new damage model. Mater Des. 2011;32(1):183–191. doi:10.1016/j.matdes.2010.06.010
  • Kuroda M. Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model. Int J Fatigue. 2002;24(6):699–703. doi:10.1016/S0142-1123(01)00170-0
  • Desmorat R, Kane A, Seyedi M, et al. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue. Eur J Mech A Solids. 2007;26(6):909–935. doi:10.1016/j.euromechsol.2007.01.002
  • Zhang Y, Zhang X, Wang J, et al. High cycle fatigue life prediction model based on crystal plasticity and continuum damage mechanics for Ni-based single crystal superalloys under a multiaxial stress state. Int J Plast. 2023;162:1–31. doi:10.1016/j.ijplas.2023.103526
  • Zhan Z, Li H, Lam KY. Development of a novel fatigue damage model with AM effects for life prediction of commonly-used alloys in aerospace. Int J Mech Sci. 2019;155:110–124. doi:10.1016/j.ijmecsci.2019.02.032
  • Pei C, Yuan H, Li B, et al. Anisotropic damage evolution and modeling for a nickel-based superalloy built by additive manufacturing. Eng Fract Mech. 2022;268:1–18. doi:10.1016/j.engfracmech.2022.108450
  • Faghihi D, Sarkar S, Naderi M, et al. A probabilistic design method for fatigue life of metallic component. ASCE-ASME J Risk Uncert Eng Syst, Part B: Mech Eng. 2018;4(3):1–11. doi:10.1115/1.4038372
  • Wang Z, Huang X. Fatigue damage evolution and finite element simulation of the samples under different notch morphology. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
  • Burr A, Persenot T, Doutre P-T, et al. A numerical framework to predict the fatigue life of lattice structures built by additive manufacturing. Int J Fatigue. 2020;139:1–12. doi:10.1016/j.ijfatigue.2020.105769
  • Liang X, Robert C, Hor A, et al. A numerical investigation of the high cycle fatigue sensitivity to microstructure and defect. Int J Fatigue. 2020;136:1–15. doi:10.1016/j.ijfatigue.2020.105541
  • Dinh TD, Han S, Yaghoubi V, et al. Modeling detrimental effects of high surface roughness on the fatigue behavior of additively manufactured Ti-6Al-4V alloys. Int J Fatigue. 2021;144:1–13. doi:10.1016/j.ijfatigue.2020.106034
  • Afroz L, et al. Analysing the effect of defects on stress concentration and fatigue life of L-PBF AlSi10Mg alloy using finite element modelling. Prog Addit Manuf. 2023;8(3): 1–19.
  • Wan H, Wang Q, Jia C, et al. Multi-scale damage mechanics method for fatigue life prediction of additive manufacture structures of Ti-6Al-4V. Mater Sci Eng A. 2016;669:269–278. doi:10.1016/j.msea.2016.05.073
  • Pei C, Shi D, Yuan H, et al. Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718. Mater Sci Eng A. 2019;759:278–287. doi:10.1016/j.msea.2019.05.007
  • Bagheri A, Yadollahi A, Mahtabi MJ, et al. Microstructure-based multistage fatigue modeling of NiTi alloy fabricated via direct energy deposition (DED). J Mater Eng Perform. 2022;31(6):4761–4775. doi:10.1007/s11665-022-06603-z
  • Xue Y, Pascu A, Horstemeyer MF, et al. Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel. Acta Mater. 2010;58(11):4029–4038. doi:10.1016/j.actamat.2010.03.014
  • Torries B, Sterling AJ, Shamsaei N, et al. Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V. Rapid Prototyp J. 2016;22(5):817–825. doi:10.1108/RPJ-11-2015-0168
  • Torries B, Shamsaei N. Fatigue behavior and modeling of additively manufactured Ti-6Al-4V including interlayer time interval effects. Jom. 2017;69(12):2698–2705. doi:10.1007/s11837-017-2625-y
  • Cao M, Liu Y, Dunne FP. A crystal plasticity approach to understand fatigue response with respect to pores in additive manufactured aluminium alloys. Int J Fatigue. 2022;161:1–15. doi:10.1016/j.ijfatigue.2022.106917
  • Krishnamoorthi S, Bandyopadhyay R, Sangid MD. A microstructure-based fatigue model for additively manufactured Ti-6Al-4V, including the role of prior β boundaries. Int J Plast. 20232023;163:1–24. doi:10.1016/j.ijplas.2023.103569
  • Luo Z, Li D, Ojha A, et al. Prediction of high cycle fatigue strength for additive manufactured metals by defects incorporated crystal plasticity modeling. Mater Sci Eng A. 2023;870:1–16. doi:10.1016/j.msea.2023.144832
  • Salvati E, Tognan A, Laurenti L, et al. A defect-based physics-informed machine learning framework for fatigue finite life prediction in additive manufacturing. Mater Des. 2022;222:1–14. doi:10.1016/j.matdes.2022.111089
  • Wang L, Zhu S-P, Luo C, et al. Defect driven physics-informed neural network framework for fatigue life prediction of additively manufactured materials. Phil Trans Roy Soc A: Math, Phys Eng Sci. 2023;381(2260):1–23. doi:10.1098/rsta.2022.0386
  • Wang L, Zhu S-P, Luo C, et al. Physics-guided machine learning frameworks for fatigue life prediction of AM materials. Int J Fatigue. 2023;172:1–15. doi:10.1016/j.ijfatigue.2023.107658
  • Wang H, et al. Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network. Reliab Eng Syst Saf. 2023;243:1–14.
  • Chen J, Liu Y. Fatigue property prediction of additively manufactured Ti-6Al-4V using probabilistic physics-guided learning. Addit Manuf. 2021;39:1–19. doi:10.1016/j.addma.2021.101876
  • Zhan Z, Hu W, Meng Q. Data-driven fatigue life prediction in additive manufactured titanium alloy: a damage mechanics based machine learning framework. Eng Fract Mech. 2021;252:1–14. doi:10.1016/j.engfracmech.2021.107850
  • Zhan Z, Li H. Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. Int J Fatigue. 2021;142:1–13. doi:10.1016/j.ijfatigue.2020.105941
  • Ciampaglia A, Tridello A, Paolino D. Data driven method for predicting the effect of process parameters on the fatigue response of additive manufactured AlSi10Mg parts. Int J Fatigue. 2023;170:1–13. doi:10.1016/j.ijfatigue.2023.107500
  • Wang H, Li B, Xuan F-Z. Fatigue-life prediction of additively manufactured metals by continuous damage mechanics (CDM)-informed machine learning with sensitive features. Int J Fatigue. 2022;164:1–10. doi:10.1016/j.ijfatigue.2022.107147
  • Horňas J, Běhal J, Homola P, et al. Modelling fatigue life prediction of additively manufactured Ti-6Al-4V samples using machine learning approach. Int J Fatigue. 2023;169:1–12. doi:10.1016/j.ijfatigue.2022.107483
  • Zhan Z, Li H. A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing. Int J Fatigue. 2021;145:1–15. doi:10.1016/j.ijfatigue.2020.106089
  • Tridello A, Ciampaglia A, Berto F, et al. Assessment of the critical defect in additive manufacturing components through machine learning algorithms. Appl Sci. 2023;13(7):1–21. doi:10.3390/app13074294
  • Psihoyos HO, Lampeas GN. A predictive damage-tolerant approach for fatigue life estimation of additive manufactured metal materials. Metals (Basel). 2023;13(6):1–20. doi:10.3390/met13061005
  • Solberg K, Torgersen J, Berto F. Fatigue behaviour of additively manufactured Inconel 718 produced by selective laser melting. Proc Struct Int. 2018;13:1762–1767. doi:10.1016/j.prostr.2018.12.371
  • Kahlin M, Ansell H, Moverare J. Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces. Int J Fatigue. 2017;101:51–60. doi:10.1016/j.ijfatigue.2017.04.009
  • Razavi S-M-J, Ferro P, Berto F. Fatigue assessment of Ti–6Al–4V circular notched specimens produced by selective laser melting. Metals (Basel). 2017;7(8):1–10. doi:10.3390/met7080291
  • Razavi SMJ, Ferro P, Berto F, et al. Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V. Theor Appl Fract Mech. 2018;97:376–384. doi:10.1016/j.tafmec.2017.06.021
  • Nicoletto G. Directional and notch effects on the fatigue behavior of as-built DMLS Ti6Al4V. Int J Fatigue. 2018;106:124–131. doi:10.1016/j.ijfatigue.2017.10.004
  • Nicoletto G. Influence of rough as-built surfaces on smooth and notched fatigue behavior of L-PBF AlSi10Mg. Addit Manuf. 2020;342018;106:124–131. doi:10.1016/j.addma.2020.101251
  • Nicoletto G. Smooth and notch fatigue behavior of selectively laser melted Inconel 718 with as-built surfaces. Int J Fatigue. 2019;128:1–11. doi:10.1016/j.ijfatigue.2019.105211
  • Afkhami S, Dabiri E, Lipiäinen K, et al. Effects of notch-load interactions on the mechanical performance of 3D printed tool steel 18Ni300. Addit Manuf. 2021;47:1–18. doi:10.1016/j.addma.2021.102260
  • Molaei R, Fatemi A, Phan N. Notched fatigue of additive manufactured metals under axial and multiaxial loadings, Part I: effects of surface roughness and HIP and comparisons with their wrought alloys. Int J Fatigue. 2021;143:1–11. doi:10.1016/j.ijfatigue.2020.106003
  • Beretta S, Patriarca L, Gargourimotlagh M, et al. A benchmark activity on the fatigue life assessment of AlSi10Mg components manufactured by L-PBF. Mater Des. 2022;218:1–25. doi:10.1016/j.matdes.2022.110713
  • Kishore P, Singh T, Aher R, et al. Workflow for fatigue life prediction of additive manufactured complex designs from powder bed fusion of Ti-6Al-4V. Int J Fatigue. 2023;177:1–16. doi:10.1016/j.ijfatigue.2023.107941
  • Raičević N, Grbović A, Kastratović G, et al. Fatigue life prediction of topologically optimized torque link adjusted for additive manufacturing. Int J Fatigue. 2023;176:1–17. doi:10.1016/j.ijfatigue.2023.107907
  • Boursier Niutta C, Tridello A, Paolino DS. Fatigue design of additive manufacturing components through topology optimization: comparison of methodologies based on the defect distribution and on the stress gradient. Fat Fract Eng Mater Struct. 2023;46(9):3429–3445.
  • Margetin M, Chmelko V, Sulko M, et al. fatigue lifetime analysis of a bicycle frame made by additive manufacturing technology from AlSi10Mg. Metals (Basel). 2022;12(8):1–14. doi:10.3390/met12081277
  • Schnabel K, Baumgartner J, Möller B, et al. Fatigue assessment of additively manufactured AlSi10Mg structures using effective stress concepts based on the critical distance approach. Weld World. 2021;65:2119–2133. doi:10.1007/s40194-021-01153-9