885
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Additively manufactured multi-functional metamaterials: low coefficient of thermal expansion and programmable Poisson’s ratio

, &
Article: e2303714 | Received 24 Oct 2023, Accepted 05 Jan 2024, Published online: 16 Jan 2024

References

  • Veselago VG. Electrodynamics of substances with simultaneously negative and magnetic permeabilities. Soviet Physics Uspekhi. 1967;92(7):517.
  • Chen T, Pauly M, Reis PM. A reprogrammable mechanical metamaterial with stable memory. Nature. 2021;589(7842):386–390. doi:10.1038/s41586-020-03123-5
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–79. doi:10.1126/science.1058847
  • Li J, Chan CT. Double-negative acoustic metamaterial. Physical Review E. 2004;70(5):055602. doi:10.1103/PhysRevE.70.055602
  • Bossart A, Dykstra DMJ, van der Laan J, et al. Oligomodal metamaterials with multifunctional mechanics. Proc Natl Acad Sci USA. 2021;118(21):e2018610118. doi:10.1073/pnas.2018610118
  • Huang C, Chen L. Negative Poisson's ratio in modern functional materials. Adv Mater. 2016;28(37):8079–8096. doi:10.1002/adma.201601363
  • Wei K, Chen H, Pei Y, et al. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J Mech Phys Solids. 2016;86:173–191. doi:10.1016/j.jmps.2015.10.004
  • Al-Ketan O, Abu Al-Rub RK. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv Eng Mater. 2019;21(10):201900524. doi:10.1002/adem.201900524
  • Xu X, Wu Q, Pang Y, et al. Multifunctional metamaterials for energy harvesting and vibration control. Adv Funct Mater. 2021;32(7):202107896. doi:10.1002/adfm.202107896
  • Fan J, Song B, Zhang L, et al. Structural design and additive manufacturing of multifunctional metamaterials with low-frequency sound absorption and load-bearing performances. Int J Mech Sci. 2022;238:107848. doi:10.1016/j.ijmecsci.2022.107848
  • Kumar R, Kumar M, Chohan JS, et al. Overview on metamaterial: History, types and applications. Mater Today Proc. 2022;56:3016–3024. doi:10.1016/j.matpr.2021.11.423
  • Bisoffi M, Hjelle B, Brown DC, et al. Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosens Bioelectron. 2008;23(9):1397–1403. doi:10.1016/j.bios.2007.12.016
  • Shen SH, Fang W, Young ST. Design considerations for an acoustic MEMS filter. Microsyst Technol. 2004;10(8-9):585–591. doi:10.1007/s00542-003-0335-6
  • Wei K, Peng Y, Qu Z, et al. A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio. Int J Solids Struct. 2018;150:255–267. doi:10.1016/j.ijsolstr.2018.06.018
  • Li X, Gao L, Zhou W, et al. Novel 2D metamaterials with negative Poisson’s ratio and negative thermal expansion. Extreme Mech Lett. 2019;30:100498. doi:10.1016/j.eml.2019.100498
  • Ai L, Gao XL. Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion. Int J Mech Sci. 2018;135:101–113. doi:10.1016/j.ijmecsci.2017.10.042
  • Ai L, Gao XL. Metamaterials with negative Poisson’s ratio and non-positive thermal expansion. Compos Struct. 2017;162:70–84. doi:10.1016/j.compstruct.2016.11.056
  • Ng CK, Saxena KK, Das R, et al. On the anisotropic and negative thermal expansion from dual-material re-entrant-type cellular metamaterials. J Mater Sci. 2016;52(2):899–912. doi:10.1007/s10853-016-0385-7
  • Wang Q, Jackson JA, Ge Q, et al. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys Rev Lett 2016;117(17):175901. doi:10.1103/PhysRevLett.117.175901
  • Peng X-L, Bargmann S. A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion. Int J Mech Sci. 2021;190:106021. doi:10.1016/j.ijmecsci.2020.106021
  • Zheng B-B, Fu M-H, Li W-H, et al. A novel re-entrant honeycomb of negative thermal expansion. Smart Mater Struct. 2018;27(8):085005. doi:10.1088/1361-665X/aacf73
  • Wang Y, Gao J, Luo Z, et al. Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials. Eng Optim. 2016;49(1):22–42. doi:10.1080/0305215X.2016.1164853
  • Ha CS, Hestekin E, Li J, et al. Controllable thermal expansion of large magnitude in chiral negative Poisson's ratio lattices. Phys Status Solidi B. 2015;252(7):1431–1434. doi:10.1002/pssb.201552158
  • Wu L, Li B, Zhou J. Isotropic negative thermal expansion metamaterials. ACS Appl Mater Interfaces. 2016;8(27):17721–17727. doi:10.1021/acsami.6b05717
  • Yu H, Wu W, Zhang J, et al. Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation. Compos Struct. 2019;210:327–338. doi:10.1016/j.compstruct.2018.11.043
  • Han Z, Wei K. Multi-material topology optimization and additive manufacturing for metamaterials incorporating double negative indexes of Poisson’s ratio and thermal expansion. Addit Manuf. 2022;54:102742. doi:10.1016/j.addma.2022.102742
  • Chen M-M, Fu M-H, Lan L-H, et al. A novel 3D structure with tunable Poisson’s ratio and tailorable coefficient of thermal expansion based on a tri-material triangle unit. Compos Struct. 2020;253:112803. doi:10.1016/j.compstruct.2020.112803
  • Fu M, Huang J, Zheng B, et al. Three-dimensional auxetic materials with controllable thermal expansion. Smart Mater Struct. 2020;29(8):085034. doi:10.1088/1361-665X/ab9dda
  • Ahadi A, Matsushita Y, Sawaguchi T, et al. Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy. Acta Mater. 2017;124:79–92. doi:10.1016/j.actamat.2016.10.054
  • Qiu C, Adkins NJE, Attallah MM. Selective laser melting of Invar 36: Microstructure and properties. Acta Mater. 2016;103:382–395. doi:10.1016/j.actamat.2015.10.020
  • Zheng J-J, Li C-S, He S, et al. Microstructural and tensile behavior of Fe-36%Ni alloy after cryorolling and subsequent annealing. Mater Sci Eng A. 2016;670:275–279. doi:10.1016/j.msea.2016.06.004
  • Wei K, Yang Q, Ling B, et al. Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Mater Sci Eng A. 2020;772:138799. doi:10.1016/j.msea.2019.138799
  • Qiu C, Liu Y, Liu H. Influence of addition of TiAl particles on microstructural and mechanical property development in Invar 36 processed by laser powder bed fusion. Addit Manuf. 2021;48:102457. doi:10.1016/j.addma.2021.102457
  • Zhang C, Zhou Y, Wei K, et al. High cycle fatigue behaviour of Invar 36 alloy fabricated by laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):2190901. doi:10.1080/17452759.2023.2190901
  • Wei C, Gu H, Li Q, et al. Understanding of process and material behaviours in additive manufacturing of Invar36/Cu10Sn multiple material components via laser-based powder bed fusion. Addit Manuf. 2021;37:101683. doi:10.1016/j.addma.2020.101683
  • Yang Q, Wei K, Yang X, et al. Microstructures and unique low thermal expansion of Invar 36 alloy fabricated by selective laser melting. Mater Charact. 2020;166:110409. doi:10.1016/j.matchar.2020.110409
  • Yakout M, Elbestawi MA, Veldhuis SC. A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L. Addit Manuf. 2018;24:405–418. doi:10.1016/j.addma.2018.09.035
  • Harrison NJ, Todd I, Mumtaz K. Thermal expansion coefficients in Invar processed by selective laser melting. J Mater Sci. 2017;52(17):10517–10525. doi:10.1007/s10853-017-1169-4
  • Asgari H, Salarian M, Ma H, et al. On thermal expansion behavior of invar alloy fabricated by modulated laser powder bed fusion. Mater Des. 2018;160:895–905. doi:10.1016/j.matdes.2018.10.025
  • Wegener T, Brenne F, Fischer A, et al. On the structural integrity of Fe-36Ni Invar alloy processed by selective laser melting. Addit Manuf. 2021;37:101603. doi:10.1016/j.addma.2020.101603
  • Yakout M, Cadamuro A, Elbestawi MA, et al. The selection of process parameters in additive manufacturing for aerospace alloys. Int J Adv Manuf Technol. 2017;92(5-8):2081–2098. doi:10.1007/s00170-017-0280-7
  • Yakout M, Elbestawi MA, Veldhuis SC. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J Mater Process Technol. 2018;266:397–420. doi:10.1016/j.jmatprotec.2018.11.006
  • He GX, Peng H, Zhou G, et al. Superior mechanical properties of Invar36 alloy lattices structures manufactured by laser powder bed fusion. Materials (Basel). 2023;16(12):4433. doi:10.3390/ma16124433
  • Mahmoud D, Al-Rubaie KS, Elbestawi MA. The influence of selective laser melting defects on the fatigue properties of Ti6Al4V porosity graded gyroids for bone implants. Int J Mech Sci. 2021;193:106180. doi:10.1016/j.ijmecsci.2020.106180
  • Yang L, Yan C, Cao W, et al. Compression–compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater. 2019;181:49–66. doi:10.1016/j.actamat.2019.09.042
  • Yang X, Yang Q, Shi Y, et al. Effect of volume fraction and unit cell size on manufacturability and compressive behaviors of Ni-Ti triply periodic minimal surface lattices. Addit Manuf. 2022;54:102737. doi:10.1016/j.addma.2022.102737
  • Milleret A, Laitinen V, Ullakko K, et al. Laser powder bed fusion of (14 M) Ni-Mn-Ga magnetic shape memory alloy lattices. Addit Manuf. 2022;60:103231. doi:10.1016/j.addma.2022.103231
  • Yang Q, Yang S, Ma S, et al. In-situ X-ray computed tomography tensile tests and analysis of damage mechanism and mechanical properties in laser powder bed fused Invar 36 alloy. J Mater Sci Technol. 2024;175:29–46. doi:10.1016/j.jmst.2023.08.014
  • Wei K, Xiao X, Xu W, et al. Large programmable coefficient of thermal expansion in additively manufactured bi-material mechanical metamaterial. Virtual Phys Prototyp. 2021;16(sup1):S53–S65. doi:10.1080/17452759.2021.1917295
  • Ling B, Wei K, Wang Z, et al. Experimentally program large magnitude of Poisson's ratio in additively manufactured mechanical metamaterials. Int J Mech Sci. 2020;173:105466. doi:10.1016/j.ijmecsci.2020.105466
  • ASTM International. Standard test methods for tension testing of metallic materials. ASTM Standardization News. 2016.
  • Leung CLA, Marussi S, Towrie M, et al. The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Mater. 2019;166:294–305. doi:10.1016/j.actamat.2018.12.027
  • Guo Q, Qu M, Escano LI, et al. Revealing melt flow instabilities in laser powder bed fusion additive manufacturing of aluminum alloy via in-situ high-speed X-ray imaging. Int J Mach Tools Manuf. 2022;175:103861. doi:10.1016/j.ijmachtools.2022.103861
  • Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36–45. doi:10.1016/j.actamat.2016.02.014
  • Zhang W, Shi Y, Liu B, et al. Consecutive sub-sector scan mode with adjustable scan lengths for selective laser melting technology. Int J Adv Manuf Technol. 2008;41(7-8):706–713. doi:10.1007/s00170-008-1527-0
  • Al-Saedi DSJ, Masood SH, Faizan-Ur-Rab M, et al. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Mater Des. 2018;144:32–44. doi:10.1016/j.matdes.2018.01.059
  • Yan C, Hao L, Hussein A, et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des. 2014;55:533–541. doi:10.1016/j.matdes.2013.10.027
  • Yadollahi A, Shamsaei N, Thompson SM, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A. 2015;644:171–183. doi:10.1016/j.msea.2015.07.056
  • Yu H, Wang H, Guo X, et al. Building block design for composite metamaterial with an ultra-low thermal expansion and high-level specific modulus. Compos Struct. 2022;300:116131. doi:10.1016/j.compstruct.2022.116131
  • Logakannan KP, Ramachandran V, Rengaswamy J, et al. Stiffened star-shaped auxetic structure with tri-directional symmetry. Compos Struct. 2022;279:114773. doi:10.1016/j.compstruct.2021.114773
  • Gao J, Gu D, Ma C, et al. Formation process and mechanical deformation behavior of a novel laser-printed compression-induced twisting-compliant mechanism. Engineering-PRC. 2022;15:133–142. doi:10.1016/j.eng.2021.03.032
  • Yang LM, Ferrucci R, Mertens W, et al. An investigation into the effect of gradients on the manufacturing fidelity of triply periodic minimal surface structures with graded density fabricated by selective laser melting. J Mater Process Technol. 2020;275:116367. doi:10.1016/j.jmatprotec.2019.116367
  • Li Z, Li X, Wang Z, et al. Multifunctional sound-absorbing and mechanical metamaterials via a decoupled mechanism design approach. Mater Horiz. 2023;10:75–87. doi:10.1039/D2MH00977C