924
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Topology optimisation for vat photopolymerization 3D printing of ceramics with flushing jet accessibility constraint

, , , &
Article: e2303717 | Received 13 Oct 2023, Accepted 05 Jan 2024, Published online: 24 Jan 2024

References

  • Bendsøe MP, Sigmund O, Bendsøe MP., topology optimization: theory, methods, and applications. 2nd ed., corrected print Berlin Heidelberg: Springer; 2004.
  • Sigmund O, Maute K. Topology optimization approaches. Struct Multidisc Optim. 2013;48:1031–1055. doi:10.1007/s00158-013-0978-6
  • Huang J, Liu J. Strength constrained topology optimization of hyperealstic structures with large deformation-induced frictionless contact. Appl Math Model. 2024;126:67–84. doi:10.1016/j.apm.2023.10.032
  • Wu J, Sigmund O, Groen JP. Topology optimization of multi-scale structures: a review. Struct Multidisc Optim. 2021;63:1455–1480. doi:10.1007/s00158-021-02881-8
  • Panesar A, Abdi M, Hickman D, et al. Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing. Additive Manuf. 2018;19:81–94. doi:10.1016/j.addma.2017.11.008
  • Zhang C, Xu S, Liu J, et al. Comprehensive clustering-based topology optimization for connectable multi-scale additive manufacturing structures. Additive Manuf. 2022;54:102786. doi:10.1016/j.addma.2022.102786
  • Li H, Luo Z, Gao L, et al. Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Comput Methods Appl Mech Eng. 2018;331:536–561. doi:10.1016/j.cma.2017.11.033
  • Zhou Y, Gao L, Li H. Topology optimization design of graded infills for 3D curved volume by a conformal sweeping method. Comput Methods Appl Mech Eng. 2023;412:116009. doi:10.1016/j.cma.2023.116009
  • Osanov M, Guest JK. Topology optimization for architected materials design. Rev Mater Res. 2016;46:211–233. doi:10.1146/annurev-matsci-070115-031826
  • Wang F, Brøns M, Sigmund O. Non-hierarchical architected materials with extreme stiffness and strength. Adv Funct Mater. 2023: 2211561. doi:10.1002/adfm.202211561
  • Liu J, Gaynor AT, Chen S, et al. Current and future trends in topology optimization for additive manufacturing. Struct Multidisc Optim. 2018;57:2457–2483. doi:10.1007/s00158-018-1994-3
  • Zhu J, Zhou H, Wang C, et al. A review of topology optimization for additive manufacturing: status and challenges. Chin J Aeronaut. 2021;34:91–110. doi:10.1016/j.cja.2020.09.020
  • Plocher J, Panesar A. Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater Des. 2019;183:108164. doi:10.1016/j.matdes.2019.108164
  • Pellens J, Lombaert G, Lazarov B, et al. Combined length scale and overhang angle control in minimum compliance topology optimization for additive manufacturing. Struct Multidisc Optim. 2019;59:2005–2022. doi:10.1007/s00158-018-2168-z
  • Xu S, Liu J, Li X, et al. A full-scale topology optimization method for surface fiber reinforced additive manufacturing parts. Comput Methods Appl Mech Eng. 2022;401:115632. doi:10.1016/j.cma.2022.115632
  • Liu J, Zheng Y, Ahmad R, et al. Minimum length scale constraints in multi-scale topology optimisation for additive manufacturing. Virtual Phys Prototyp. 2019;14:229–241. doi:10.1080/17452759.2019.1584944
  • Cheng L, Bai J, To AC. Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints. Comput Methods Appl Mech Eng. 2019;344:334–359. doi:10.1016/j.cma.2018.10.010
  • Wang C, Gu X, Zhu J, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing. Struct Multidisc Optim. 2020;61:869–894. doi:10.1007/s00158-019-02408-2
  • Xiao M, Liu X, Zhang Y, et al. Design of graded lattice sandwich structures by multiscale topology optimization. Comput Methods Appl Mech Eng. 2021;384:113949. doi:10.1016/j.cma.2021.113949
  • Clausen A, Wang F, Jensen JS, et al. Topology optimized architectures with programmable Poisson's ratio over large deformations. Mater. 2015;27:5523–5527. doi:10.1002/adma.201502485
  • Garner E, Kolken HMA, Wang CCL, et al. Compatibility in microstructural optimization for additive manufacturing. Additive Manufacturing. 2019;26:65–75. doi:10.1016/j.addma.2018.12.007
  • Guest JK, Prévost JH, Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng. 2004;61:238–254. doi:10.1002/nme.1064
  • Wang F, Lazarov BS, Sigmund O. On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim. 2011;43:767–784. doi:10.1007/s00158-010-0602-y
  • Liu J. Piecewise length scale control for topology optimization with an irregular design domain. Comput Methods Appl Mech Eng. 2019;351:744–765. doi:10.1016/j.cma.2019.04.014
  • Zhang W, Li D, Zhang J, et al. Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach. Comput Methods Appl Mech Eng. 2016;311:327–355. doi:10.1016/j.cma.2016.08.022
  • Xu S, Liu J, Huang J, et al. Multi-scale topology optimization with shell and interface layers for additive manufacturing. Additive Manuf. 2021;37:101698. doi:10.1016/j.addma.2020.101698
  • Groen JP, Sigmund O. Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Meth Eng. 2018;113:1148–1163. doi:10.1002/nme.5575
  • Qiu Z, Li Q, Liu S, et al. Clustering-based concurrent topology optimization with macrostructure, components, and materials. Struct Multidisc Optim. 2021;63:1243–1263. doi:10.1007/s00158-020-02755-5
  • Zhang C, Liu J, Yuan Z, et al. A novel lattice structure topology optimization method with extreme anisotropic lattice properties. J Comput Des Eng. 2021;8:1367–1390. doi:10.1093/jcde/qwab051
  • Xu S, Liu J, Ma Y. Residual stress constrained self-support topology optimization for metal additive manufacturing. Comput Methods Appl Mech Eng. 2022;389:114380. doi:10.1016/j.cma.2021.114380
  • Liu J, Huang J, Zheng Y, et al. Challenges in topology optimization for hybrid additive–subtractive manufacturing: A review. Computer-Aided Des. 2023;161:103531. doi:10.1016/j.cad.2023.103531
  • Zhao D, Gu TT, Liu Y, et al. Constructing self-supporting structures in biscale topology optimization. Vis Comput. 2022;38:1065–1082. doi:10.1007/s00371-021-02068-8
  • Wang W, Feng D, Yang L, et al. Topology optimization of self-supporting lattice structure. Additive Manuf. 2023;67:103507. doi:10.1016/j.addma.2023.103507
  • Luo Y, Sigmund O, Li Q, et al. Topology optimization of structures with infill-supported enclosed voids for additive manufacturing. Additive Manuf. 2022;55:102795. doi:10.1016/j.addma.2022.102795
  • Clausen A, Aage N, Sigmund O. Exploiting additive manufacturing infill in topology optimization for improved buckling load. Eng. 2016;2:250–257. doi:10.1016/J.ENG.2016.02.006
  • Liu H, Chen L, Jiang Y, et al. Multiscale optimization of additively manufactured graded non-stochastic and stochastic lattice structures. Compos Struct. 2023;305:116546. doi:10.1016/j.compstruct.2022.116546
  • Lee H, Lim CHJ, Low MJ, et al. Lasers in additive manufacturing: A review. Int J Precis Eng Manuf-Green Tech. 2017;4:307–322. doi:10.1007/s40684-017-0037-7
  • Balčas G, Malinauskas M, Farsari M, et al. Fabrication of glass-ceramic 3D micro-optics by combining laser lithography and calcination. Adv Funct Mater. 2023: 2215230. doi:10.1002/adfm.202215230
  • Liu S, Li Q, Chen W, et al. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures. Front Mech Eng. 2015;10:126–137. doi:10.1007/s11465-015-0340-3
  • Zhou L, Zhang W. Topology optimization method with elimination of enclosed voids. Struct Multidisc Optim. 2019;60:117–136. doi:10.1007/s00158-019-02204-y
  • Schwarzer E, Götz M, Markova D, et al. Lithography-based ceramic manufacturing (LCM) – viscosity and cleaning as two quality influencing steps in the process chain of printing green parts. J Eur Ceram Soc. 2017;37:5329–5338. doi:10.1016/j.jeurceramsoc.2017.05.046
  • Sobhani S, Allan S, Muhunthan P, et al. Additive manufacturing of tailored macroporous ceramic structures for high-temperature applications. Adv Eng Mater. 2020;22:2000158. doi:10.1002/adem.202000158
  • Paredes C, Martínez-Vázquez FJ, Elsayed H, et al. Evaluation of direct light processing for the fabrication of bioactive ceramic scaffolds: effect of pore/strut size on manufacturability and mechanical performance. J Eur Ceram Soc. 2021;41:892–900. doi:10.1016/j.jeurceramsoc.2020.09.002
  • Xing Z, Zhou H, Liu W, et al. Efficient cleaning of ceramic green bodies with complex architectures fabricated by stereolithography-based additive manufacturing via high viscoelastic paste. Additive Manuf. 2022;55:102809. doi:10.1016/j.addma.2022.102809
  • Zhang G, Zou B, Wang X, et al. Design, manufacturing and properties of controllable porosity of ceramic filters based on SLA-3D printing technology. Ceram Int. 2023;49:1009–1019. doi:10.1016/j.ceramint.2022.09.076
  • Zhang C, Wu T, Xu S, et al. Multiscale topology optimization for solid–lattice–void hybrid structures through an ordered multi-phase interpolation. Computer-Aided Des. 2023;154:103424. doi:10.1016/j.cad.2022.103424
  • Kim J-E, Park K. Multiscale topology optimization combining density-based optimization and lattice enhancement for additive manufacturing. Int J Precis Eng Manuf-Green Tech. 2021;8:1197–1208. doi:10.1007/s40684-020-00289-1
  • Halloran JW. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Rev Mater Res. 2016;46:19–40. doi:10.1146/annurev-matsci-070115-031841
  • Chen Q, Zou B, Lai Q, et al. Influence of irradiation parameters on the curing and interfacial tensile strength of HAP printed part fabricated by SLA-3D printing. J Eur Ceram Soc. 2022;42:6721–6732. doi:10.1016/j.jeurceramsoc.2022.07.019
  • Mao H, Jia W, Leung Y-S, et al. Multi-material stereolithography using curing-on-demand printheads. Rapid Prototyp J. 2021;27:861–871. doi:10.1108/RPJ-05-2020-0104
  • Zhou C, Chen Y, Yang Z, et al. Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyp J. 2013;19:153–165. doi:10.1108/13552541311312148
  • Langelaar M. Topology optimization for multi-axis machining. Comput Methods Appl Mech Eng. 2019;351:226–252. doi:10.1016/j.cma.2019.03.037
  • Mirzendehdel AM, Behandish M, Nelaturi S. Topology optimization with accessibility constraint for multi-axis machining. Computer-Aided Des. 2020;122:102825. doi:10.1016/j.cad.2020.102825
  • Deng H, To AC. A novel mathematical formulation for density-based topology optimization method considering multi-axis machining constraint. J Mech Des. 2022;144:061702. doi:10.1115/1.4053333
  • Sigmund O. Morphology-based black and white filters for topology optimization. Struct Multidisc Optim. 2007;33:401–424. doi:10.1007/s00158-006-0087-x
  • Gao J, Li H, Gao L, et al. Topological shape optimization of 3D micro-structured materials using energy-based homogenization method. Adv Eng Software. 2018;116:89–102. doi:10.1016/j.advengsoft.2017.12.002
  • Svanberg K. The method of moving asymptotes—a new method for structural optimization. Int J Numer Meth Eng. 1987;24:359–373. doi:10.1002/nme.1620240207
  • Andreassen E, Clausen A, Schevenels M, et al. Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidisc Optim. 2011;43:1–16. doi:10.1007/s00158-010-0594-7