736
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a novel gantry system for cooperative printing of plastic materials

, &
Article: e2305208 | Received 04 Nov 2023, Accepted 06 Jan 2024, Published online: 25 Jan 2024

References

  • Sepasgozar SME, Shi A, Yang L, Shirowzhan S, Edwards DJ. Additive manufacturing applications for industry 4.0: A systematic critical review. Buildings. 2020;10(12):231-261. doi:10.3390/buildings10120231
  • Sabourin E, Houser SA, Helge Bøhn J. Adaptive slicing using stepwise uniform refinement. Rapid Prototyp J. 1996;2(4):20–26. doi:10.1108/13552549610153370
  • Wu C, Dai C, Fang G, et al. RoboFDM: A robotic system for support-free fabrication using FDM. 2017 IEEE International Conference on Robotics and Automation (ICRA)2017: 1175–1180. doi:10.1109/icra.2017.7989140
  • Shah J, Snider B, Clarke T, Kozutsky S, Lacki M, Hosseini A. Large-scale 3D printers for additive manufacturing: design considerations and challenges. The International Journal of Advanced Manufacturing Technology. 2019;104(9-12):3679-3693. https://doi.org/10.1007/s00170-019-04074-6.
  • Mazzei Capote GA, Oehlmann PEV, Blanco Campos JC, et al. Trends in force and print speed in material extrusion. Additive Manufacturing. 2021;46:102141. doi:10.1016/j.addma.2021.102141
  • Geng P, Zhao J, Wu W, et al. Investigation of void formation in friction stir welding of 7N01 aluminum alloy. J Manuf Process. 2019;37:139–173. doi:10.1016/j.jmapro.2018.11.019
  • Alhijaily A, Kilic ZM, Bartolo ANP. Teams of robots in additive manufacturing: a review. Virtual Phys Prototyp. 2023;18(1):2162929. doi:10.1080/17452759.2022.2162929
  • Jiang Z, Wang H, Sun Y. Improved co-scheduling of multi-layer printing path scanning for collaborative additive manufacturing. IISE Transactions. 2021;53:960-973. doi:10.1080/24725854.2020.1807076
  • Jin Y, Pierson HA, Liao H. Toolpath allocation and scheduling for concurrent fused filament fabrication with multiple extruders. IISE Transactions. 2019;51(2):192–208. doi:10.1080/24725854.2017.1374582
  • Shen H, Pan L, Qian J. Research on large-scale additive manufacturing based on multi-robot collaboration technology. Additive Manufacturing. 2019: 100906. doi:10.1016/j.addma.2019.100906
  • BCN3D. IDEX technology [Accessed 10 May 2023] https://www.bcn3d.com/technology/.
  • Bui H, Pierson HA, Nurre SG, et al. Tool path planning optimization for multi-tool additive manufacturing. Procedia Manufacturing. 2019;39:457–464. doi:10.1016/j.promfg.2020.01.389
  • Wang Y, Gu Z, Song L, et al. Speeding up 3D printing using multi-head slicing algorithms. 2017 5th International Conference on Enterprise Systems. 2017: 99–106. doi:10.1109/es.2017.23
  • Manoharan M, Kumaraguru S. Path planning for direct energy deposition with collaborative robots: A review. 2018 Conference on Information and Communication Technology. 2018: 1–6. doi:10.1109/infocomtech.2018.8722362
  • Zhang J, Khoshnevis B. Optimal machine operation planning for construction by contour crafting. Autom Constr. 2013;29:50–67. doi:10.1016/j.autcon.2012.08.006
  • Krishnamurthy V, Poudel L, Ebert M, et al. Layerlock: layer-wise collision-free multi-robot additive manufacturing using topologically interlocked space-filling shapes. Computer-Aided Design. 2022;152:103392. doi:10.1016/j.cad.2022.103392
  • Chiddarwar SS, Ramesh Babu N. Conflict free coordinated path planning for multiple robots using a dynamic path modification sequence. Rob Auton Syst. 2011;59(7-8):508–518. doi:10.1016/j.robot.2011.03.006
  • Sustarevas J, Benjamin Tan KX, Gerber D, et al. Youwasps: towards autonomous multi-robot mobile deposition for construction. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019: 2320–2327. doi:10.1109/IROS40897.2019.8967766
  • Zhang X, Li M, Lim JH, et al. Large-scale 3D printing by a team of mobile robots. Autom Constr. 2018;95:98–106. doi:10.1016/j.autcon.2018.08.004
  • Bui H, Pierson HA, Pinkley SN, et al. Toolpath planning for multi-gantry additive manufacturing. IISE Transactions. 2021;53(5):552–567. doi:10.1080/24725854.2020.1775915
  • Bhatt PM, Nycz A, Gupta SK. Optimizing multi-robot placements for wire arc additive manufacturing. 2022 International Conference on Robotics and Automation (ICRA)2022. p. 7942-8. doi:10.1109/ICRA46639.2022.9812318
  • Fenollosa F, Gomà JR, Buj-Corral I, et al. Foreseeing new multi-material FFF-additive manufacturing concepts meeting mimicking requirements with living tissues. Procedia Manufacturing. 2019;41:1063–1070. doi:10.1016/j.promfg.2019.10.034
  • Luo RC, Tseng P-K. Trajectory generation and planning for simultaneous 3D printing of multiple objects. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)2017: 1147–1152. doi:10.1109/isie.2017.8001407
  • Essentium. Unlocking True Independent Dual Extrusion (IDEX), https://www.essentium.com/true-idex/ [Accessed 10 May 2023].
  • Wachsmuth JP. Multiple independent extrusion heads for fused deposition modeling [master's thesis]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, USA; 2008.
  • Project Escher: Autodesk. (2017). [Accessed 10 May 2023] https://theindexproject.org/award/nominees/1931.
  • Titan Robotics, Cronus: Cronus | Titan Robotics. (2017). [Accessed 10 May 2023] https://titan3drobotics.com/tag/cronus/.
  • Wasp. TECLA. (2021). [Accessed 10 May 2023] https://www.3dwasp.com/en/3d-printed-house-tecla/.
  • Cai Y, Choi SH. Deposition group-based toolpath planning for additive manufacturing with multiple robotic actuators. Procedia Manufacturing. 2019;34:584–593. doi:10.1016/j.promfg.2019.06.223
  • Bhatt PM, Kabir AM, Malhan RK, et al. A robotic cell for multi-resolution additive manufacturing. 2019 International Conference on Robotics and Automation (ICRA)2019: 2800–2807. doi:10.1109/icra.2019.8793730
  • Zhong X, Xiafu P, Jiehua Z. Dynamic collision avoidance of mobile robot based on velocity obstacles. Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering. 2011: 2410–2413. doi:10.1109/tmee.2011.6199707
  • Borkowski P, Pietrzykowski Z, Magaj J. The algorithm of determining an anti-collision manoeuvre trajectory based on the interpolation of ship's state vector. Sensors. 2021;21(16):5332. doi:10.3390/s21165332
  • Lenart AS. Analysis of collision threat parameters and criteria. J Navig. 2015;68(5):887–896. doi:10.1017/S0373463315000223
  • Monnot J, Toulouse S. The traveling salesman problem and its variations. In: Paschos VT, editor. Paradigms of combinatorial optimization. New Jersey: Wiley; 2014. p. 173–214. doi:10.1002/9781119005353.ch7
  • Matai R, Singh S, Lal M. Traveling salesman problem: an overview of applications, formulations, and solution approaches. Traveling Salesman Problem, Theory and Applications, 2010. doi:10.5772/12909
  • Englert M, Röglin H, Vöcking B. Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica. 2014;68(1):190–264. doi:10.1007/s00453-013-9801-4
  • Sun X, Mazur M, Cheng C-T. A review of void reduction strategies in material extrusion-based additive manufacturing. Additive Manufacturing. 2023;67:103463. doi:10.1016/j.addma.2023.103463
  • Chagnot M. (2019). Bracket topology optimization [Accessed 2 September 2023) https://grabcad.com/library/bracket-topology-optimization-2-1.
  • Salaets B. (2018). Rotor Hub wind turbine [Accessed 2 September 2023] https://grabcad.com/library/rotor-hub-wind-turbine-1.
  • Kumar R. Wing – 23012 Aerofoil Section 2012 [Accessed 2 September 2023] https://grabcad.com/library/wing-23012-aerofoil-section.
  • Alhijaily A, Kilic ZM, Bartolo P. Online cooperative printing by mobile robots. Virtual Phys Prototyp. 2023;18(1). doi:10.1080/17452759.2023.2276257