1,499
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling, optimization, and testing of novel cuboidal spherical plate lattice structures

, &
Article: e2308514 | Received 27 Oct 2023, Accepted 08 Jan 2024, Published online: 31 Jan 2024

References

  • Leonhardt U. Optical conformal mapping. Science (80-). 2006;312(5781):1777–1780. doi:10.1126/science.1126493
  • Ha CS, Lakes RS, Plesha ME. Cubic negative stiffness lattice structure for energy absorption: Numerical and experimental studies. Int J Solids Struct. 2019;178–179:127–135. doi:10.1016/j.ijsolstr.2019.06.024
  • Bertoldi K, Reis PM, Willshaw S, et al. Negative poisson’s ratio behavior induced by an elastic instability. Adv Mater. 2010;22(3):361–366. doi:10.1002/adma.200901956
  • Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material. J Mech Phys Solids. 2001;49:1747–1769. doi:10.1016/S0022-5096(01)00010-2
  • Al-Ketan O, Abu Al-Rub RK. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv Eng Mater. 2019;21(10). doi:10.1002/adem.201900524
  • Berger JB, Wadley HNG, McMeeking RM. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature. 2017;543(7646):533–537. doi:10.1038/nature21075
  • Baghous N, Barsoum I, Abu Al-Rub RK. The effect of Lode parameter on the yield surface of Schoen’s IWP triply periodic minimal surface lattice. Mech Mater. 2022;175:104473. doi:10.1016/j.mechmat.2022.104473
  • Baghous N, Barsoum I, Abu Al-Rub RK. Generalized yield surface for sheet-based triply periodic minimal surface lattices. Int J Mech Sci. 2023;252:108370. doi:10.1016/j.ijmecsci.2023.108370
  • Ahmed N, Barsoum I, Abu Al-Rub RK. Numerical investigation on the effect of residual stresses on the effective mechanical properties of 3D-printed TPMS lattices. Metals (Basel). 2022;12(8):1–20. doi:10.3390/met12081344
  • Ahmed N, Barsoum I, Al-Rub RKA. Numerical investigation of residual stresses in thin-walled additively manufactured structures from selective laser melting. Heliyon. 2023;9(9):e19385. doi:10.1016/j.heliyon.2023.e19385
  • Altamimi S, Lee DW, Barsoum I, et al. On stiffness, strength, anisotropy, and buckling of 30 strut-based lattices with cubic crystal structures. Adv Eng Mater. 2022;24(7). doi:10.1002/adem.202101379
  • Viswanath A, Khan KA, Barsoum I. Design of novel isosurface strut-based lattice structures: Effective stiffness, strength, anisotropy and fatigue properties. Mater Des. 2022;224:111293. doi:10.1016/j.matdes.2022.111293
  • Dong L, Deshpande V, Wadley H. Mechanical response of Ti-6Al-4V octet-truss lattice structures. Int J Solids Struct. 2015;60–61:107–124. doi:10.1016/j.ijsolstr.2015.02.020
  • Alomar Z, Concli F. Compressive behavior assessment of a newly developed circular cell-based lattice structure. Mater Des. 2021;205:109716. doi:10.1016/j.matdes.2021.109716
  • Tancogne-Dejean T, Diamantopoulou M, Gorji MB, et al. 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Adv Mater. 2018;30(45):1–6. doi:10.1002/adma.201803334
  • Sigmund O, Maute K. Topology optimization approaches. Struct Multidiscip Optim. 2013;48(6):1031–1055. doi:10.1007/s00158-013-0978-6
  • Bendsøe MP, Lund E, Olhoff N, et al. Topology optimization – broadening the areas of application. Control Cybern. 2005;34(1):7–36.
  • Xiao Z, Yang Y, Xiao R, et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Mater Des. 2018;143:27–37. doi:10.1016/j.matdes.2018.01.023
  • Duan S, Xi L, Wen W, et al. Mechanical performance of topology-optimized 3D lattice materials manufactured via selective laser sintering. Compos Struct. 2020;238(January):111985. doi:10.1016/j.compstruct.2020.111985
  • Zeng Q, Duan S, Zhao Z, et al. Inverse design of energy-absorbing metamaterials by topology optimization. Adv Sci. 2022:1–10. doi:10.1002/advs.202204977
  • Alawwa F, Barsoum I, Al-Rub RKA. Modeling, testing, and optimization of novel lattice structures for enhanced mechanical performance. Mech Adv Mater Struct. 2023:2262987. doi:10.1080/15376494.2023.2262987
  • Xia Z, Zhang Y, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct. 2003;40(8):1907–1921. doi:10.1016/S0020-7683(03)00024-6
  • Xia Z, Zhou C, Yong Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct. 2006;43(2):266–278. doi:10.1016/j.ijsolstr.2005.03.055
  • Abu Al-Rub RK, Lee D-W, Khan KA, et al. Effective anisotropic elastic and plastic yield properties of periodic foams derived from triply periodic Schoen’s I-WP minimal surface. J Eng Mech. 2020;146(5):1–19. doi:10.1061/(asce)em.1943-7889.0001759
  • Ranganathan SI, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys Rev Lett. Aug 2008;101(5). doi:10.1103/PhysRevLett.101.055504
  • Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids. 1963;11(2):127–140. doi:10.1016/0022-5096(63)90060-7
  • Gibson LJ, Ashby MF. Cellular solids: structure and properties. 2nd ed. UK; 1997. doi:10.1017/CBO9781139878326
  • Fleck NA, Deshpande VS, Ashby MF. Micro-architectured materials: past, present and future. Proc R Soc A Math Phys Eng Sci. 2010;466(2121):2495–2516. doi:10.1098/rspa.2010.0215
  • Snyder JP, Voxland PM. An album of map projections. 1989. doi:10.3133/pp1453
  • Ran Z, Zou C, Wei Z, et al. VELAS: an open-source toolbox for visualization and analysis of elastic anisotropy. Comput Phys Commun. 2023;283:108540. doi:10.1016/j.cpc.2022.108540
  • Suquet PM. Overall potentials and extremal surfaces of power law or ideally plastic composites. J Mech Phys Solids. 1993;41(6):981–1002. doi:10.1016/0022-5096(93)90051-G
  • Crook C, Bauer J, Guell Izard A, et al. Plate-nanolattices at the theoretical limit of stiffness and strength. Nat Commun. 2020;11(1):1–11. doi:10.1038/s41467-020-15434-2
  • Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng. 1988;71:197–224. doi:10.1016/0045-7825(88)90086-2
  • Almesmari A, Alagha AN, Naji MM, et al. Recent advancements in design optimization of lattice structured materials. Adv Eng Mater. 2023;25. doi:10.1002/adem.202201780
  • Abueidda DW, Abu Al-Rub RK, Dalaq AS, et al. Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mech Mater. 2016;95:102–115. doi:10.1016/j.mechmat.2016.01.004
  • Almesmari A, Sheikh-ahmad J, Jarrar F, et al. Optimizing the specific mechanical properties of lattice structures fabricated by material extrusion additive manufacturing. J Mater Res Technol. 2022;22:1821–1838. doi:10.1016/j.jmrt.2022.12.024
  • Li QM, Magkiriadis I, Harrigan JJ. Compressive strain at the onset of densification of cellular solids. J Cell Plast. 2006;42(5):371–392. doi:10.1177/0021955X06063519
  • Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams from compressive measurements. Polym Eng Sci. 1981;21(15):1010–1014. doi:10.1002/pen.760211505
  • Alomar Z, Concli F. A review of the selective laser melting lattice structures and their numerical models. Adv Eng Mater. 2020;22(12):1–17. doi:10.1002/adem.202000611
  • Concli F, Gilioli A. Numerical and experimental assessment of the mechanical properties of 3D printed 18-Ni300 steel trabecular structures produced by Selective Laser Melting–a lean design approach. Virtual Phys Prototyp. 2019;14(3):267–276. doi:10.1080/17452759.2019.1565596
  • Concli F, Gilioli A, Nalli F. Experimental–numerical assessment of ductile failure of additive manufacturing selective laser melting reticular structures made of Al A357. Proc Inst Mech Eng Part C J Mech Eng Sci. 2021;235(10):1909–1916. doi:10.1177/0954406219832333
  • Nalli F, Cortese L, Concli F. Ductile damage assessment of Ti6Al4 V, 17-4PH and AlSi10Mg for additive manufacturing. Eng Fract Mech. 2021;241(November 2020):107395. doi:10.1016/j.engfracmech.2020.107395
  • Concli F, Gilioli A. Numerical and experimental assessment of the static behavior of 3D printed reticular Al structures produced by Selective Laser Melting: progressive damage and failure. Procedia Struct Integr. 2018;12:204–212. doi:10.1016/j.prostr.2018.11.094
  • Abou-Ali AM, Al-Ketan O, Lee DW, et al. Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Mater Des. 2020;196:109100. doi:10.1016/j.matdes.2020.109100
  • Challapalli A, Patel D, Li G. Inverse machine learning framework for optimizing lightweight metamaterials. Mater Des. 2021;208:109937. doi:10.1016/j.matdes.2021.109937
  • Li T, Jarrar F, Abu Al-Rub R, et al. Additive manufactured semi-plate lattice materials with high stiffness, strength and toughness. Int J Solids Struct. 2021;230–231:111153. doi:10.1016/j.ijsolstr.2021.111153
  • Fan B, Xu Z, Lin Y, et al. Mechanical properties of a novel two-phase hybrid plate-lattice metamaterial. Mech Adv Mater Struct. 2023;30(23):4752–4763. doi:10.1080/15376494.2022.2104974
  • Yu A, Zhang C, Xu W, et al. Additive manufacturing of multi-morphology graded titanium scaffolds for bone implant applications. J Mater Sci Technol. 2023;139:47–58. doi:10.1016/j.jmst.2022.07.035
  • Egan PF, Khatri NR, Parab MA, et al. Mechanics of 3D-printed polymer lattices with varied design and processing strategies. Polymers (Basel). 2022;14(24):5515. doi:10.3390/polym14245515
  • León-Becerra J, González-Estrada OA, Quiroga J. Effect of relative density in in-plane mechanical properties of common 3D-printed polylactic acid lattice structures. ACS Omega. Nov 2021;6(44):29830–29838. doi:10.1021/acsomega.1c04295
  • Almesmari A, Baghous N, Ejeh CJ, et al. Review of additively manufactured polymeric metamaterials: design, fabrication, testing and modeling. Polymers (Basel). 2023;15(19):3858. doi:10.3390/polym15193858