3,543
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Three-dimensional, soft magnetic-cored solenoids via multi-material extrusion

ORCID Icon, ORCID Icon & ORCID Icon
Article: e2310046 | Received 27 Oct 2023, Accepted 09 Jan 2024, Published online: 20 Feb 2024

References

  • Quanjin M, Rejab MRM, Idris MS, et al. Recent 3D and 4D intelligent printing technologies: a comparative review and future perspective. Procedia Comput Sci. 2020;167:1210–1219. doi:10.1016/j.procs.2020.03.434.
  • Melo Máximo D, Velásquez-García LF. Additively manufactured electrohydrodynamic ionic liquid pure-ion sources for nanosatellite propulsion. Addit Manuf. 2020;36:101719. doi:10.1016/j.addma.2020.101719.
  • Izquierdo-Reyes J, Bigelow Z, Lubinsky NK, et al. Compact retarding potential analyzers enabled by glass-ceramic vat polymerization for CubeSat and laboratory plasma diagnostics. Addit Manuf. 2022;58:103034. doi:10.1016/j.addma.2022.103034.
  • Li F, Macdonald NP, Guijt RM, et al. Increasing the functionalities of 3D printed microchemical devices by single material, multi material, and print-pause-print 3D printing. Lab Chip. 2019;19:35–49. doi:10.1039/C8LC00826D
  • Taylor AP, Velásquez-García LF. Miniaturized diaphragm vacuum pump by multi-material additive manufacturing. J Microelectromech Syst. 2017;26(6):1316–1326. doi:10.1109/JMEMS.2017.2743020
  • Lee H-J, Cañada J, Velásquez-García LF. Compact peristaltic vacuum pumps via multi-material extrusion. Addit Manuf. 2023;68:103511. doi:10.1016/j.addma.2023.103511
  • Taylor AP, Vélez Cuervo C, Arnold D, et al. Fully 3D-printed, monolithic, mini magnetic actuators for low-cost, compact systems. J Microelectromech Syst. 2019;28(3):481–493. doi:10.1109/JMEMS.2019.2910215
  • Taylor AP, Izquierdo Reyes J, Velásquez-García LF. Compact, magnetically actuated, additively manufactured pumps for liquids and gases. J Phys. D Appl Phys. 2020;53(35):355002. doi:10.1088/1361-6463/ab8de8
  • Sun Z, Velásquez-García LF. Monolithic FFF printed, biodegradable, biocompatible, dielectric–conductive microsystems. J Microelectromech Syst. 2017;26(6):1356–1370. doi:10.1109/JMEMS.2017.2746627
  • Flowers PF, Reyes C, Ye S, et al. 3D printing electronic components and circuits with conductive thermoplastic filament. Addit Manuf. 2017;18:156–163. doi:10.1016/j.addma.2017.10.002.
  • Colella R, Catarinucci L. Wearable UHF RFID sensor-tag based on customized 3D-printed antenna substrates. IEEE Sensors J. 2018;18(21):8789–8795. doi:10.1109/JSEN.2018.2867597
  • Su W, et al. 3D printed wearable flexible SIW and microfluidics sensors for Internet of Things and smart health applications. In: 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA; 2017. p. 544–547. doi:10.1109/MWSYM.2017.8058621.
  • Njogu P, Sanz-Izquierdo B, Elibiary A, et al. 3D printed fingernail antennas for 5G applications. IEEE Access. 2020;8:228711–228719. doi:10.1109/ACCESS.2020.3043045
  • Bito J, Bahr R, Hester JG, et al. A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient Internet-of-Things wireless sensors. IEEE Trans Microwave Theory Tech. 2017;65(5):1831–1842. doi:10.1109/TMTT.2017.2660487
  • Savvides G, et al. 3D rapid-prototyped 21-31-GHz hollow SIWs for low-cost 5G IoT and robotic applications. IEEE Access. 2021;9:11750–11760. doi:10.1109/ACCESS.2021.3051180.
  • Dahle R, Rasel R. 3-D printing as an effective educational tool for MEMS design and fabrication. IEEE Trans Educ. 2016;59(3):210–215. doi:10.1109/TE.2016.2515071
  • Sun Y, Li Q. The application of 3D printing in mathematics education. In: 2017 12th International Conference on Computer Science and Education (ICCSE), Houston, TX, USA; 2017. p. 47–50. doi:10.1109/ICCSE.2017.8085461.
  • Kornbluth Y, Mathews RH, Parameswaran L, et al. Fully 3D-printed, ultrathin capacitors via multi-material microsputtering. Adv Mater Technol. 2022;7(8):2200097. doi:10.1002/admt.202200097.
  • Khan Z, He H, Chen X, et al. Dipole antennas 3D-printed from conductive thermoplastic filament. In: 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Tønsberg, Norway; 2020. p. 1–4. doi:10.1109/ESTC48849.2020.9229736.
  • Perales IA, Velásquez-García LF. Fully 3D-printed carbon nanotube field emission electron sources with in-plane gate electrode. Nanotechnology. 2019;30(49):495302. doi:10.1088/1361-6528/ab3d17
  • Ntagios M, Escobedo P, Dahiya R. 3D printed robotic hand with embedded touch sensors. In: 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK; 2020. p. 1–4. doi:10.1109/FLEPS49123.2020.9239587.
  • Chirila R, Ozioko O, Schyns PG, et al. Multidirectional strain sensor using multimaterial 3D printing. In: 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria; 2022. p. 1–4. doi:10.1109/FLEPS53764.2022.9781529.
  • Persad J, Rocke S. “Multi-material 3D printed electronic assemblies: A review. Results Eng. 2022;16:100730. ISSN 2590-1230. doi:10.1016/j.rineng.2022.100730.
  • Goh GL, Zhang H, Chong TH, et al. 3D printing of multilayered and multimaterial electronics: a review. Adv Electron Mater. 2021;7:2100445. doi:10.1002/aelm.202100445
  • Hensleigh R, Cui H, Xu Z, et al. Charge-programmed three-dimensional printing for multi-material electronic devices. Nat Electron. 2020;3:216–224. doi:10.1038/s41928-020-0391-2
  • Muscat A, Bhattacharya S, Zhu Y. Electromagnetic vibrational energy harvesters: a review. Sensors. 5555;22(15):2022. doi:10.3390/s22155555
  • Miyajima H, et al. A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope. J Microelectromech. Syst. 2003;12(3):243–251. doi:10.1109/JMEMS.2003.809961.
  • Getpreecharsawas J, Puchades I, Hournbuckle B, et al. An electromagnetic MEMS actuator for micropumps. In: Proc. 2nd Int. Conf. on Perspective Technologies and Methods in MEMS Design; 2006. p. 11–14. doi:10.1109/MEMSTECH.2006.288652.
  • Choi Y-S, Yoon J-B, Kim B-I, et al. A high-performance MEMS transformer for silicon RF ICS. In: Technical Digest Fifteenth IEEE Int. Conf. on Micro Electro Mechanical Systems (Cat. No.02CH37266); 2002. p. 653–656. doi:10.1109/MEMSYS.2002.984355.
  • Lei C, Zhou Y, Gao X, et al. Fabrication of a solenoid-type inductor with Fe-based soft magnetic core. J Magn Magn Mater. 2007;308(2):284–288. doi:10.1016/j.jmmm.2006.06.002.
  • Gassend B, Velásquez-García LF, Akinwande AI. Design and fabrication of DRIE-patterned complex needle-like structures. J Microelectromech Syst. 2010;19(3):589–598. doi:10.1109/JMEMS.2010.2042680
  • Velásquez-García LF, Cheung K, Akinwande AI. An application of 3D MEMS packaging: out-of-plane quadrupole mass filters. J Microelectromech. Syst. 2008;16(6):1430–1438. doi:10.1109/JMEMS.2008.2006769
  • Velásquez-García LF, Akinwande AI, Martínez-Sánchez M. Precision hand assembly of MEMS subsystems using DRIE-patterned deflection spring structures: an example of an out-of-plane substrate assembly. J Microelectromech Syst. 2007;16(3):598–612. doi:10.1109/JMEMS.2007.892931
  • Heubel EV, Velásquez-García LF. Microfabricated retarding potential analyzers with enforced aperture alignment for improved ion energy measurements in plasmas. J Microelectromech Syst. 2015;24(5):1355–1369. doi:10.1109/JMEMS.2015.2399373
  • Zhou N, Liu C, Lewis JA, et al. Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications. Adv Mater. 2017;29:1605198. doi:10.1002/adma.201605198
  • Gu Y, Park D, Bowen D, et al. Direct-write printed, solid-core solenoid inductors with commercially relevant inductances. Adv Mater Technol. 2019;4:1800312. doi:10.1002/admt.201800312
  • Loh G, Pei E, Gonzalez-Gutierrez J, et al. An overview of material extrusion troubleshooting. Appl Sci. 2020. 10.4776.10.3390app10144776.
  • Lopes LR, Silva AF, Carneiro OS. Multi-material 3D printing: The relevance of materials affinity on the boundary interface performance. Addit Manuf. 2018;23:45–52. ISSN 2214-8604. doi:10.1016/j.addma.2018.06.027.
  • Goh G, et al. A 3D printing-enabled artificially innervated smart soft gripper with variable joint stiffness. Adv Mater Technol. 2023: 2301426. doi:10.1002/admt.202301426
  • Cañada J, Velásquez-García LF. Fully 3D-printed solenoids for compact systems. In: 21st International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Salt Lake City, UT, USA; 2022. p. 150–153. doi:10.1109/PowerMEMS56853.2022.10007551.
  • Cañada J, Velásquez-García LF. Monolithically 3D-printed, miniature solenoids with soft magnetic core for compact systems. In: 13th International Conference on Power, Energy and Electrical Engineering (CPEEE), Tokyo, Japan; 2023. p. 116–120. doi:10.1109/CPEEE56777.2023.10217558.
  • Rocca M, Fragasso A, Liu W, et al. Embedded multimaterial extrusion bioprinting. SLAS Technol. 2018;23(2):154–163. ISSN 2472-6303. doi:10.1177/2472630317742071.
  • Li L, Tirado A, Nlebedim I, et al. Big area additive manufacturing of high performance bonded NdFeB magnets. Sci Rep. 2016;6:36212. doi:10.1038/srep36212
  • Martin V, et al. Low cost 3D printing of metals using filled polymer pellets. HardwareX. 2022;11:e00292. doi:10.1016/j.ohx.2022.e00292
  • Kornbluth Y, Mathews RH, Parameswaran L, et al. Nano-additively manufactured gold thin films with high adhesion and near-bulk electrical resistivity via jet-assisted, nanoparticle-dominated, room-temperature microsputtering. Addit Manuf. 2020;36:101679. doi:10.1016/j.addma.2020.101679
  • Kornbluth Y, Mathews RH, Parameswaran L, et al. Room-temperature, atmospheric-pressure deposition of dense, nanostructured metal films via microsputtering. Nanotechnology. 2019;30(28):285602. doi:10.1088/1361-6528/ab1281