765
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of heat treatment and electroless Ni-P coating on mechanical property and corrosion behaviour of 316L stainless steel fabricated by laser powder bed fusion

, , , , , , & ORCID Icon show all
Article: e2312912 | Received 29 Nov 2023, Accepted 26 Jan 2024, Published online: 08 Feb 2024

References

  • Qi Y, Zhang H, Yang X, et al. Achieving superior high-temperature mechanical properties in Al-Cu-Li-Sc-Zr alloy with nano-scale microstructure via laser additive manufacturing. Mater Res Lett. 2024;12:17–25. doi:10.1080/21663831.2023.2285388
  • Zhao D, Han C, Peng B, et al. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Acta Biomater. 2022;153:614–629. doi:10.1016/j.actbio.2022.09.047
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Liu L, Ding Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater Today. 2018;21:354–361. doi:10.1016/j.mattod.2017.11.004
  • Saravanan M, Devaraju A, Venkateshwaran N, et al. A review on recent progress in coatings on AISI austenitic stainless steel. Mater Today Proc. 2018;5:14392–14396. doi:10.1016/j.matpr.2018.03.024
  • Zhao C, Bai Y, Zhang Y, et al. Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel. Mater Des. 2021;209:109999. doi:10.1016/j.matdes.2021.109999
  • Revilla RI, Van Calster M, Raes M, et al. Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: a comparative study bringing insights into the impact of microstructure on their passivity. Corros Sci. 2020;176:108914. doi:10.1016/j.corsci.2020.108914
  • Lou X, Song M, Emigh PW, et al. On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing. Corros Sci. 2017;128:140–153. doi:10.1016/j.corsci.2017.09.017
  • Tromas C, Stinville JC, Templier C, et al. Hardness and elastic modulus gradients in plasma-nitrided 316L polycrystalline stainless steel investigated by nanoindentation tomography. Acta Mater. 2012;60:1965–1973. doi:10.1016/j.actamat.2011.12.012
  • Lang FC, Xing YM, Zhu J, et al. Study of the mechanical properties of a nanostructured surface layer on 316L stainless steel. Adv Mater Sci Eng. 2016;2016:1–9. doi:10.1155/2016/7517616
  • Lyu Y, Chen Y, Wan Y. A novel post-processing method for 316L steel specimen generated by SLM using TiN/TiAlN multilayer coating. Rapid Prototyp J. 2020;26:1477–1483. doi:10.1108/RPJ-07-2019-0199
  • Groden C, Traxel KD, Afrouzian A, et al. Inconel 718-W7Ni3Fe bimetallic structures using directed energy deposition-based additive manufacturing. Virtual Phys Prototyp. 2022;17:170–180. doi:10.1080/17452759.2022.2025673
  • Yao L, Huang S, Ramamurty U, et al. On the formation of “fish-scale” morphology with curved grain interfacial microstructures during selective laser melting of dissimilar alloys. Acta Mater. 2021;220:117331. doi:10.1016/j.actamat.2021.117331
  • Yao L, Xiao Z, Huang S, et al. The formation mechanism of metal-ceramic interlayer interface during laser powder bed fusion. Virtual Phys Prototyp. 2023;18; doi:10.1080/17452759.2023.2235324
  • Menon V, Aranas C, Jr., Saha G. Cold spray additive manufacturing of copper-based materials: review and future directions. Mater Sci Addit Manuf. 2022;1(2):1–20. doi:10.18063/msam.v1i2.12
  • Loto CA. Electroless nickel plating. A review. Silicon. 2016;8:177–186. doi:10.1007/s12633-015-9367-7
  • Fang X-x, Zhou H-z, Xue Y-j. Corrosion properties of stainless steel 316L/Ni-Cu-P coatings in warm acidic solution. Trans Nonferrous Met Soc China (English Ed.). 2015;25:2594–2600. doi:10.1016/S1003-6326(15)63880-8
  • León OA, Staia MH, Hintermann HE. High temperature wear of an electroless Ni-P-BN (h) composite coating. Surf Coatings Technol. 2003;163–164:578–584. doi:10.1016/S0257-8972(02)00663-1
  • A. C1624-05. Standard test method for adhesion strength and mechanical failure modes of, ASTM Int. C1624-05 (2012) 1–29. 2015. doi:10.1520/C1624-05R15.Scope
  • Liu Z, Zhao D, Wang P, et al. Additive manufacturing of metals: microstructure evolution and multistage control. J Mater Sci Technol. 2022;100:224–236. doi:10.1016/j.jmst.2021.06.011
  • Wen X, Wang C, Gong Y, et al. Microstructure and mechanical properties of FeCoNiCrAl high-entropy alloys by selective laser melting. Chinese J Mech Eng Addit Manuf Front. 2023;2:100069. doi:10.1016/j.cjmeam.2023.100069
  • Bai Y, Zhao C, Zhang J, et al. Abnormal thermal expansion behaviour and phase transition of laser powder bed fusion maraging steel with different thermal histories during continuous heating. Addit Manuf. 2022;53:102712. doi:10.1016/j.addma.2022.102712
  • Wang K, Chao Q, Annasamy M, et al. On the pitting behaviour of laser powder bed fusion prepared 316L stainless steel upon post-processing heat treatments. Corros Sci. 2022;197:110060. doi:10.1016/j.corsci.2021.110060
  • Yan F, Xiong W, Faierson E, et al. Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion. Scr Mater. 2018;155:104–108. doi:10.1016/j.scriptamat.2018.06.011
  • Marattukalam JJ, Karlsson D, Pacheco V, et al. The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Mater Des. 2020;193:108852. doi:10.1016/j.matdes.2020.108852
  • Salman OO, Gammer C, Chaubey AK, et al. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Mater Sci Eng A. 2019;748:205–212. doi:10.1016/j.msea.2019.01.110
  • Farshidianfar MH, Khajepour A, Gerlich AP. Effect of real-time cooling rate on microstructure in laser additive manufacturing. J Mater Process Technol. 2016;231:468–478. doi:10.1016/j.jmatprotec.2016.01.017
  • Zhang X, Chen L, Zhou J, et al. Simulation and experimental studies on process parameters, microstructure and mechanical properties of selective laser melting of stainless steel 316L. J Brazilian Soc Mech Sci Eng. 2020;42:1–14. doi:10.1007/s40430-020-02491-3
  • Bai Y, Zhao C, Zhang Y, et al. Additively manufactured CuCrZr alloy: microstructure, mechanical properties and machinability. Mater Sci Eng A. 2021;819:141528. doi:10.1016/j.msea.2021.141528
  • Moyle M, Ledermueller C, Zou Z, et al. Multi-scale characterisation of microstructure and texture of 316L stainless steel manufactured by laser powder bed fusion. Mater Charact. 2022;184:111663. doi:10.1016/j.matchar.2021.111663
  • Guo SQ, Hou LF, Guo CL, et al. Characteristics and corrosion behavior of nickel-phosphorus coatings deposited by a simplified bath. Mater Corros. 2017;68:468–475. doi:10.1002/maco.201609155
  • Keong KG, Sha W. Crystallisation and phase transformation behaviour of electroless nickel – phosphorus deposits and their engineering properties. Surf Eng. 2002;18:329–343. doi:10.1179/026708402225010010
  • Duncan RN. The metallurgical structure of electroless nickel deposits: effect on coating properties. Plat Surf Finish. 1996;83:65–69.
  • Salicio-Paz A, Grande H, Pellicer E, et al. Monolayered versus multilayered electroless NiP coatings: impact of the plating approach on the microstructure, mechanical and corrosion properties of the coatings. Surf Coatings Technol. 2019;368:138–146. doi:10.1016/j.surfcoat.2019.04.013
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17:63–71. doi:10.1038/nmat5021
  • Buchtík M, Krystỳnová M, Másilko J, et al. The effect of heat treatment on properties of Ni-P coatings deposited on a AZ91 magnesium alloy. Coatings. 2019;9(7):461. doi:10.3390/coatings9070461
  • Huang S, Kumar P, Yeong WY, et al. Fracture behavior of laser powder bed fusion fabricated Ti41Nb via in-situ alloying. Acta Mater. 2022;225:117593. doi:10.1016/j.actamat.2021.117593
  • Kelly RG, Lee JS. Localized corrosion: crevice corrosion. In: Encyclopedia of interfacial chemistry: surface science and electrochemistry. Localized corrosion: crevice corrosion. Bonn: Elsevier; 2018. p. 291–301. doi:10.1016/B978-0-12-409547-2.13420-1
  • Laleh M, Hughes AE, Xu W, et al. On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting. Corros Sci. 2019;161:108189. doi:10.1016/j.corsci.2019.108189
  • Lasia A. Electrochemical impedance spectroscopy and its applications, 2014. doi:10.1007/978-1-4614-8933-7
  • Fonseca RM, Soares RB, Carvalho RG, et al. Corrosion behavior of magnetron sputtered NbN and Nb1-xAlxN coatings on AISI 316L stainless steel. Surf Coatings Technol. 2019;378:124987. doi:10.1016/j.surfcoat.2019.124987
  • Zhang SD, Wu J, Qi WB, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel. Corros Sci. 2016;110:57–70. doi:10.1016/j.corsci.2016.04.021
  • Cruz V, Chao Q, Birbilis N, et al. Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corros Sci. 2020;164:108314. doi:10.1016/j.corsci.2019.108314