555
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The enhanced mechanical properties of laser powder bed fusion Al-Mn-Sc alloy via non-isothermal aging

, , , &
Article: e2317777 | Received 15 Nov 2023, Accepted 30 Jan 2024, Published online: 21 Feb 2024

References

  • Zhang J, Song B, Wei Q, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol. 2019;35:270–284. doi:10.1016/j.jmst.2018.09.004
  • Liu M, Wei K, Zhou R, et al. Microstructure and mechanical property of high power laser powder bed fusion AlSi10Mg alloy before and after T6 heat treatment. Virtual Phys Prototyp. 2022;17:749–767. doi:10.1080/17452759.2022.2068294
  • Grushko B, Balanetskyy S. A study of phase equilibria in the Al-rich part of the Al–Mn alloy system. Int J Mater Res. 2008;99:1319–1323. doi:10.3139/146.101768
  • Mair P, Letofsky-Papst I, Leichtfried G. Microstructural features and mechanical properties of a novel Ti- and Zr-modified Al-Mn alloy processed by laser powder bed fusion. J Alloys Compd. 2022;897:1–10. doi:10.1016/j.jallcom.2021.163156
  • Mochugovskiy AG, Tabachkova NY, Mikhaylovskaya AV. Nanodispersoids of the quasicrystalline I-phase in Mn- and Mg-bearing aluminum-based alloys. Mater Lett. 2021;284:1–5. doi:10.1016/j.matlet.2020.128945
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Zhao D, Han C, Peng B, et al. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Acta Biomater. 2022;153:614–629. doi:10.1016/j.actbio.2022.09.047
  • Yu W, Xiao Z, Zhang X, et al. Processing and characterization of crack-free 7075 aluminum alloys with elemental Zr modification by laser powder bed fusion. Mater Sci Addit Manuf. 2022;1:1–11. doi:10.18063/msam.v1i1.4
  • Kuo CN, Chua CK, Peng PC, et al. Microstructure evolution and mechanical property response via 3D printing parameter development of Al–Sc alloy. Virtual Phys Prototyp. 2020;15:120–129. doi:10.1080/17452759.2019.1698967
  • Zhang H, Gu D, Dai D. Laser printing path and its influence on molten pool configuration, microstructure and mechanical properties of laser powder bed fusion processed rare earth element modified Al-Mg alloy. Virtual Phys Prototyp. 2022;17:308–328. doi:10.1080/17452759.2022.2036530
  • Qi Y, Zhang H, Yang X, et al. Achieving superior high-temperature mechanical properties in Al-Cu-Li-Sc-Zr alloy with nano-scale microstructure via laser additive manufacturing. Materials Research Letters. 2024;12:17–25. doi:10.1080/21663831.2023.2285388
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549:365–369. doi:10.1038/nature23894
  • Zhang X, Xiao Z, Yu W, et al. Influence of erbium addition on the defects of selective laser-melted 7075 aluminium alloy. Virtual Phys Prototyp. 2022;17:406–418. doi:10.1080/17452759.2021.1990358
  • Sun Y, Wang J, Shi Y, et al. An SLM-processed Er- and Zr-modified Al–Mg alloy: microstructure and mechanical properties at room and elevated temperatures. Mater Sci Eng A. 2023;883:1–12. doi:10.1016/j.msea.2023.145485
  • Spierings AB, Dawson K, Kern K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment. Mater Sci Eng A. 2017;701:264–273. doi:10.1016/j.msea.2017.06.089
  • Yuan S, Wu M, Yin X, et al. Synchronous improvement of strength and corrosion resistance by an improved variable-rate non-isothermal aging process in Al-Zn-Mg-Cu alloy. Mater Charact. 2024;207:1–15. doi:10.1016/j.matchar.2023.113491
  • Wang J, Xie J, Mao Z, et al. Microstructure evolution and mechanical properties of the Al-Cu-Mg-Ag alloy during non-isothermal aging. J Alloys Compd. 2023;942:1–12. doi:10.1016/j.jallcom.2023.169031
  • Nicolas M, Deschamps A. Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments. Acta Mater. 2003;51:6077–6094. doi:10.1016/S1359-6454(03)00429-4
  • Staley JT, Durham N. (2007). “Method and process of non-isothermal aging for aluminum alloys.” Us Patent 20070267113A1.
  • Zang C, Xiao W, Fu Y, et al. Enhanced properties and homogeneity of Al-Zn-Mg-Cu alloy thick plate by non-isothermal aging. J Alloys Compd. 2023;952:1–16. doi:10.1016/j.jallcom.2023.170023
  • Jiang JT, Xiao WQ, Yang L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al–Zn–Mg–Cu alloy. Mater Sci Eng A. 2014;605:167–175. doi:10.1016/j.msea.2014.03.023
  • Liu Y, Jiang D, Li B, et al. Effect of cooling aging on microstructure and mechanical properties of an Al–Zn–Mg–Cu alloy. Mater Des. 2014;57:79–86. doi:10.1016/j.matdes.2013.12.024
  • Peng X, Guo Q, Liang X, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy. Mater Sci Eng A. 2017;688:146–154. doi:10.1016/j.msea.2017.01.086
  • Jia Q, Zhang F, Rometsch P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al–Mn–Sc alloy fabricated by selective laser melting. Acta Mater. 2020;193:239–251. doi:10.1016/j.actamat.2020.04.015
  • Wang M, Li R, Yuan T, et al. The evolution of quasicrystal during additive manufacturing and aging treatment of a Si-modified Al–Mn-Sc alloy. Mater Sci Eng A. 2022;859:1–7. doi:10.1016/j.msea.2022.144206
  • Jiang W, Deng Y, Guo X. Effect of heat treatment on microstructure and mechanical anisotropy of selective laser melted Al–Mn-Sc alloy. Mater Sci Eng A. 2023;887:1–11. doi:10.1016/j.msea.2023.145743
  • Yu WH, Sing SL, Chua CK, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog Mater Sci. 2019;104:330–379. doi:10.1016/j.pmatsci.2019.04.006
  • Kongthep J, Juijerm P. Kinetics of precipitation hardening phase in aluminium alloy AA 6110. Mater Sci Technol. 2014;30:1815–1819. doi:10.1179/1743284713Y.0000000488
  • Varschavsky A, Donoso E. A differential scanning calorimetrie study of precipitation in Cu-2Be. Thermochim Acta. 1995;266:257–275. doi:10.1016/0040-6031(95)02338-0
  • Fatmi M, Ghebouli B, Ghebouli MA, et al. The kinetics of precipitation in Al-2.4wt% Cu alloy by kissinger, ozawa, bosswel and matusita methods. Phys B. 2011;406:2277–2280. doi:10.1016/j.physb.2011.03.053
  • Vlach M, Stulikova I, Smola B, et al. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy. Mater Charact. 2013;86:59–68. doi:10.1016/j.matchar.2013.09.010
  • Pan S, Qian F, Li C, et al. Synergistic strengthening by nano-sized α-Al(Mn,Fe)Si and Al3Zr dispersoids in a heat-resistant Al–Mn–Fe–Si–Zr alloy. Mater Sci Eng A. 2021;819:1–12. doi:10.1016/j.msea.2021.141460
  • Khan IN, Starink MJ, Yan JL. A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys. Mater Sci Eng A. 2008;472:66–74. doi:10.1016/j.msea.2007.03.033
  • Djema O, Bouabdallah M, Badji R, et al. Isothermal and non-isothermal precipitation kinetics in Al–Mg–Si-(Ag) alloy. Mater Chem Phys. 2020;240:1–9. doi:10.1016/j.matchemphys.2019.122073
  • Boumerzoug Z, Fatmi M. Effect of heat treatments on discontinuous precipitation kinetics in Al-30 wt.% Zn alloy. Mater Charact. 2009;60:768–774. doi:10.1016/j.matchar.2008.12.015
  • Guía-Tello JC, Garay-Reyes CG, Ruiz-Esparza-Rodríguez MA, et al. Effect of plastic deformation on the precipitation reaction in 2024 alloys. Mater Chem Phys. 2021;271:1–5. doi:10.1016/j.matchemphys.2021.124927
  • Eivani AR, Taheri AK. Modeling age hardening kinetics of an Al–Mg–Si–Cu aluminum alloy. J Mater Process Technol. 2008;205:388–393. doi:10.1016/j.jmatprotec.2007.11.195
  • Jia Q, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al Mn Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 2019;171:108–118. doi:10.1016/j.actamat.2019.04.014
  • Jo H, Fujikawa S. Kinetics of precipitation in Al-Sc alloys and low temperature solid solubility of scandium in aluminium studied by electrical resistivity measurements. Mater Sci Eng A. 1993;171:151–161. doi:10.1016/0921-5093(93)90401-Y
  • Vlach M, Stulikova I, Smola B, et al. Effect of cold rolling on precipitation processes in Al–Mn–Sc–Zr alloy. Mater Sci Eng A. 2012;548:27–32. doi:10.1016/j.msea.2012.03.063
  • Vlach M, Stulíková I, Smola B, et al. Phase transformations in isochronally annealed mould-cast and cold-rolled Al–Sc–Zr-based alloy. J Alloys Compd. 2010;492:143–148. doi:10.1016/j.jallcom.2009.11.126
  • Senkov ON, Shagiev MR, Senkova SV, et al. Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 2008;56:3723–3738. doi:10.1016/j.actamat.2008.04.005
  • Luiggi NJ. Analysis of thermoelectric power measurements in the study of precipitation kinetics in 3003 Al alloy. Metall Mater Trans B. 1997;28:149–159. doi:10.1007/s11663-997-0137-9
  • Wierszyłłowski I, Wieczorek S, Stankowiak A, et al. Kinetics of transformation during supersaturation and aging of the Al-4.7mass%Cu alloy: grain size, dilatometric, and differential thermal analysis studies. J Phase Equilibria Diffus. 2005;26:555–560. doi:10.1007/s11669-005-0050-3
  • Ghosh KS, Gao N. Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al-Zn-Mg alloy. Trans Nonferrous Met Soc China. 2011;21:1199–1209. doi:10.1016/S1003-6326(11)60843-1
  • Feng D, Zhang X, Liu S, et al. Non-isothermal retrogression kinetics for grain boundary precipitate of 7A55 aluminum alloy. Trans Nonferrous Met Soc China. 2014;24:2122–2129. doi:10.1016/S1003-6326(14)63322-7
  • Zhao J, Wang B, Liu T, et al. Study of in situ formed quasicrystals in Al-Mn based alloys fabricated by SLM. J Alloys Compd. 2022;909:164847. doi:10.1016/j.jallcom.2022.164847
  • Gargarella P, Almeida A, Vilar R, et al. Microstructural characterization of a laser remelted coating of Al91Fe4Cr3Ti2 quasicrystalline alloy. Scr Mater. 2009;61:709–712. doi:10.1016/j.scriptamat.2009.06.010
  • Qian F, Jin S, Sha G, et al. Enhanced dispersoid precipitation and dispersion strengthening in an Al alloy by microalloying with Cd. Acta Mater. 2018;157:114–125. doi:10.1016/j.actamat.2018.07.001
  • Vo NQ, Dunand DC, Seidman DN. Atom probe tomographic study of a friction-stir-processed Al–Mg–Sc alloy. Acta Mater. 2012;60:7078–7089. doi:10.1016/j.actamat.2012.09.015
  • Zhang Z, Sun J, Wu J, et al. Influence of heat treatment on corrosion behavior of Al–Mn–Mg–Sc–Zr alloy produced by laser powder bed fusion. J Mater Res Technol. 2023;23:4734–4746. doi:10.1016/j.jmrt.2023.02.029
  • Li R, Wang M, Li Z, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater. 2020;193:83–98. doi:10.1016/j.actamat.2020.03.060
  • Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Mater. 2003;51:4803–4814. doi:10.1016/S1359-6454(03)00320-3
  • Krug ME, Mao Z, Seidman DN, et al. Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al–Li–Sc alloys. Acta Mater. 2014;79:382–395. doi:10.1016/j.actamat.2014.06.038