904
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanical property enhancement in additively manufactured NiTi double-asymmetric honeycombs with bioinspired graded design

, , , , , , , , , & show all
Article: e2321160 | Received 28 Dec 2023, Accepted 15 Feb 2024, Published online: 28 Feb 2024

References

  • Gao JY, Chen S, Ying Liu T, et al. Additive manufacture of low melting point metal porous materials: capabilities, potential applications and challenges. Mater Today. 2021;49:201–230. doi:10.1016/j.mattod.2021.03.019
  • Yang J, Gu D, Lin K, et al. Laser additive manufacturing of cellular structure with enhanced compressive performance inspired by Al–Si crystalline microstructure. CIRP J Manuf Sci Technol. 2021;32:26–36. doi:10.1016/j.cirpj.2020.11.003
  • Liu H, Gu D, Qi J, et al. Dimensional effect and mechanical performance of node-strengthened hybrid lattice structure fabricated by laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2240306. doi:10.1080/17452759.2023.2240306
  • Wei Y, Zhang Y, Song Q, et al. Effects of different configurations and gradients on compression responses of gradient honeycombs via selective laser melting. Thin-Walled Struct. 2022;170:108462. doi:10.1016/j.tws.2021.108462
  • Wei K, Chen H, Pei Y, et al. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J Mech Phys Solids. 2016;86:173–191. doi:10.1016/j.jmps.2015.10.004
  • Huang W, Zhang Y, Xu Y, et al. Out-of-plane mechanical design of bi-directional hierarchical honeycombs. Compos Part B Eng. 2021;221:109012. doi:10.1016/j.compositesb.2021.109012
  • Adams R, Townsend S, Soe S, et al. Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading. Mater Design. 2022;213:110368. doi:10.1016/j.matdes.2021.110368
  • Pehlivan L, Baykasoğlu C. An experimental study on the compressive response of CFRP honeycombs with various cell configurations. Compos Part B Eng. 2019;162:653–661. doi:10.1016/j.compositesb.2019.01.044
  • Zhang S, Ma Y, Deng Z. Analytical solution and experimental verification for the buckling failure of additively manufactured octagonal honeycombs. Compos Struct. 2023;303:116306. doi:10.1016/j.compstruct.2022.116306
  • Zhang X, Zhang H. Theoretical and numerical investigation on the crush resistance of rhombic and kagome honeycombs. Compos Struct. 2013;96:143–152. doi:10.1016/j.compstruct.2012.09.028
  • Simoes M, Harris JA, Ghouse S, et al. Process parameter sensitivity of the energy absorbing properties of additively manufactured metallic cellular materials. Mater Design. 2022;224:111398. doi:10.1016/j.matdes.2022.111398
  • Wang K, Chen J, Han Z, et al. Synergistically program thermal expansional and mechanical performances in 3D metamaterials: design-architecture-performance. J Mech Phys Solids. 2022;169:105064. doi:10.1016/j.jmps.2022.105064
  • Wei K, Peng Y, Qu Z, et al. A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson’s ratio. Int J Solids Struct. 2018;150:255–267. doi:10.1016/j.ijsolstr.2018.06.018
  • Zhang D, Fei Q, Jiang D, et al. Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy. Compos Struct. 2018;192:289–299. doi:10.1016/j.compstruct.2018.02.082
  • Li Z, Yao S, Ma W, et al. Energy-absorption characteristics of a circumferentially corrugated square tube with a cosine profile. Thin-Walled Struct. 2019;135:385–399. doi:10.1016/j.tws.2018.11.028
  • Yang K, Li Z, Ge D. Quasi-static and dynamic out-of-plane crashworthiness of 3D curved-walled mixed-phase honeycombs. Thin-Walled Struct. 2023;182:110305. doi:10.1016/j.tws.2022.110305
  • Hu D, Wang Y, Song B, et al. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing. Compos Part B Eng. 2019;162:21–32. doi:10.1016/j.compositesb.2018.10.095
  • Wu F, Chen Y, Zhao S, et al. Mechanical properties and energy absorption of composite bio-inspired multi-cell tubes. Thin-Walled Struct. 2023;184:110451. doi:10.1016/j.tws.2022.110451
  • Yang T, Jia Z, Chen H, et al. Mechanical design of the highly porous cuttlebone: bioceramic hard buoyancy tank for cuttlefish. Proc Natl Acad Sci USA. 2020;117(38):23450–23459. doi:10.1073/pnas.2009531117
  • Mao A, Zhao N, Liang Y, et al. Mechanically efficient cellular materials inspired by cuttlebone. Adv Mater. 2021;33:1–8. doi:10.1002/adma.202007348
  • Cui CY, Chen L, Feng S, et al. Compressive resistance of the bio-inspired cuttlebone-like sandwich structure under quasi-static load. Int J Mech Sci. 2023;248:108222. doi:10.1016/j.ijmecsci.2023.108222
  • Sun G, Xu F, Li G, et al. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. Int J Impact Eng. 2014;64:62–74. doi:10.1016/j.ijimpeng.2013.10.004
  • Kumar S, Ubaid J, Abishera R, et al. Tunable energy absorption characteristics of architected honeycombs enabled via additive manufacturing. ACS Appl Mater Interfaces. 2019;11(45):42549–42560. doi:10.1021/acsami.9b12880
  • Yang J, Gu D, Lin K, et al. Laser 3D printed bio-inspired impact resistant structure: failure mechanism under compressive loading. Virtual Phys Prototyp. 2020;15(1):75–86. doi:10.1080/17452759.2019.1677124
  • Yang X, Yang Q, Shi Y, et al. Effect of volume fraction and unit cell size on manufacturability and compressive behaviors of Ni-Ti triply periodic minimal surface lattices. Addit Manuf. 2022;54:102737. doi:10.1016/j.addma.2022.102737
  • Chen W, Gu D, Yang J, et al. Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion. Int J Extreme Manuf. 2022;4(4):045002. doi:10.1088/2631-7990/ac8ef3
  • Yan Z, Zhu J-N, Borisov E, et al. Superelastic response and damping behaviour of additively manufactured nitinol architectured materials. Addit Manuf. 2023;68:103505. doi:10.1016/j.addma.2023.103505
  • Denton EJ, Gilpin-Brown JB. The distribution of gas and liquid within the cuttlebone. J Marine Biol Assoc United Kingdom. 1961;41(2):365–381. doi:10.1017/S0025315400023973
  • Yuan L, Gu D, Lin K, et al. Electrically actuated shape recovery of NiTi components processed by laser powder bed fusion after regulating the dimensional accuracy and phase transformation behavior. Chin J Mech Eng Addit Manuf Front. 2022;1(4):100056. doi:10.1016/j.cjmeam.2022.100056
  • ISO 13314. (2011). Mechanical testing of metals-ductility testing-compression test for porous and cellular metals. International Organization for Standardization 2011. www.iso.org.
  • Wang P, Yang F, Zheng B, et al. Breaking the tradeoffs between different mechanical properties in bioinspired hierarchical lattice metamaterials. Adv Funct Mater. 2021; 33(45):2305978. doi:10.1002/adfm.202305978
  • Wang P, Yang F, Ru D, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application. MaterDesign. 2021;210:110116. doi:10.1016/j.matdes.2021.110116
  • Wang Y, Liu F, Zhang X, et al. Cell-size graded sandwich enhances additive manufacturing fidelity and energy absorption. Int J Mech Sci. 2021;211:106798. doi:10.1016/j.ijmecsci.2021.106798
  • Chmielewska A, Jahadakbar A, Wysocki B, et al. Chemical polishing of additively manufactured, porous, nickel-titanium skeletal fixation plates. 3D Printing Addit Manuf. 2022;9(4):269–277. doi:10.1089/3dp.2020.0209
  • Gu D, Yang J, Wang H, et al. Laser powder bed fusion of bio-inspired reticulated shell structure: optimization mechanisms of structure, process, and compressive property. CIRP J Manuf Sci Technol. 2021;35:1–12. doi:10.1016/j.cirpj.2021.04.005
  • Yang J, Gu D, Lin K, et al. Laser powder bed fusion of mechanically efficient helicoidal structure inspired by mantis shrimp. Int J Mech Sci. 2022;231:107573. doi:10.1016/j.ijmecsci.2022.107573
  • Lu HZ, Ma HW, Luo X, et al. Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting. J Mater Res Technol. 2021;15:6797–6812. doi:10.1016/j.jmrt.2021.11.112
  • Zaeh MF, Branner G. Investigations on residual stresses and deformations in selective laser melting. Prod Eng. 2010;4(1):35–45. doi:10.1007/s11740-009-0192-y
  • Ha NS, Lu G, Xiang X. Energy absorption of a bio-inspired honeycomb sandwich panel. J Mater Sci. 2019;54(8):6286–6300. doi:10.1007/s10853-018-3163-x
  • Li W, Li Z, Li S, et al. Crushing behaviors and energy absorption evaluation methods of hexagonal steel tubular columns with triangular cells. Materials (Basel). 2022;15(11):1–15. doi:10.3390/ma15113910
  • Liu Y, Qi Y, Sun H, et al. Bionic design of thin-walled tubes inspired by the vascular structure of bamboo. Thin-Walled Struct. 2023;186:110689. doi:10.1016/j.tws.2023.110689
  • Niu X, Wang X, Lu Y, et al. Greatly improving the energy absorption capacity of pre-folded tubes via non-uniformizing structures. Acta Mech Sin/Lixue Xuebao. 2023;39(11):423092. doi:10.1007/s10409-023-23092-x
  • Tao Y, Li W, Wei K, et al. Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression. Compos Part B Eng. 2019;176:107219. doi:10.1016/j.compositesb.2019.107219
  • Voyiadjis GZ, Znemah RA, Wood P. Microstructure and geometry effects on the compressive behavior of LPBF-manufactured inconel 718 honeycomb structures. J Mater Res Technol. 2023;24:1562–1578. doi:10.1016/j.jmrt.2023.03.093
  • Wang Z, Zhang J, Li Z, et al. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression. Int J Mech Sci. 2020;186(15):105893. doi:10.1016/j.ijmecsci.2020.105893
  • Xiang J, Du J. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading. Mater Sci Eng A. 2017;696:283–289. doi:10.1016/j.msea.2017.04.044
  • Zhou G, Yu T, Cheng Y, et al. Optimization of printing parameters and out-of-plane compression performance of 316L stainless steel ribbed honeycomb. CIRP J Manuf Sci Technol. 2023;43:71–87. doi:10.1016/j.cirpj.2023.02.004
  • Zou M, Xu S, Wei C, et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo. Thin-Walled Struct. 2016;101:222–230. doi:10.1016/j.tws.2015.12.023
  • Dong J, Ye G, Wang Y, et al. Design, manufacture and crushing behaviors of buckling-inspired auxetic meta-lattice structures. Int J Smart Nano Mater. 2021;12(4):491–510. doi:10.1080/19475411.2021.1966855
  • Yan B, Zhang Y, Jiang S, et al. Mechanical properties and fracture mechanisms of martensitic NiTi shape memory alloy based on various thermomechanical-processing microstructures. J Alloys Compd. 2021;883:160797. doi:10.1016/j.jallcom.2021.160797
  • Zhang D, Li Y, Cong W. Multi-scale pseudoelasticity of NiTi alloys fabricated by laser additive manufacturing. Mater Sci Eng A. 2021;821:141600. doi:10.1016/j.msea.2021.141600
  • Rauch HA, Cui H, Knight KP, et al. Additive manufacturing of yttrium-stabilized tetragonal zirconia: progressive wall collapse, martensitic transformation, and energy dissipation in micro-honeycombs. Addit Manuf. 2022;52:102692. doi:10.1016/j.addma.2022.102692
  • Lu HZ, Chen T, Liu LH, et al. Constructing function domains in NiTi shape memory alloys by additive manufacturing. Virtual Phys Prototyp. 2022;17(3):563–581. doi:10.1080/17452759.2022.2053821
  • Chen J, Xing L, Fang G, et al. Improved elastocaloric cooling performance in gradient-structured NiTi alloy processed by localized laser surface annealing. Acta Mater. 2021;208:116741. doi:10.1016/j.actamat.2021.116741
  • Hou H, Simsek E, Ma T, et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science. 2019;366(6469):1116–1121. doi:10.1126/science.aax7616